中压、大功率、高电平逆变器中的低频与高频 PWM:总谐波失真(THD)、谐波滤波和效率比较

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Rami F. Yehia;Robson B. Gonzatti;Zhehui Guo;Hui Li;Fang Z. Peng
{"title":"中压、大功率、高电平逆变器中的低频与高频 PWM:总谐波失真(THD)、谐波滤波和效率比较","authors":"Rami F. Yehia;Robson B. Gonzatti;Zhehui Guo;Hui Li;Fang Z. Peng","doi":"10.1109/OJPEL.2024.3458891","DOIUrl":null,"url":null,"abstract":"One of the main advantages of multi-level inverters (MLI) is their ability to achieve high power quality and high efficiency power conversion. With the emergence of wide-band-gap (WBG) devices, the tendency has grown towards using high switching frequencies to improve converters’ output power quality and minimize switching harmonic filters footprint. While high-frequency switching finds significant success in low and medium-power applications, it is not the best practice to reduce the filter size when applied to medium voltage (MV) high power (HP) inverters implemented with high voltage levels. In this paper, we show that the least filtering requirements for MV HP higher level inverters is achieved using the modulation strategy with the least switching, i.e., the staircase modulation. The paper compares the harmonic filter requirements and power losses for low-frequency and high-frequency pulse-width-modulated MLI. The analysis shows that low-frequency switching not only achieves the lowest losses, but also produces the lowest line-to-line voltage total harmonic distortion (THD), which allows eliminating both voltage and current harmonic filters in higher level inverters. Simulation results are provided to verify the theoretical analysis on the THD, and experiments on a 1 kW, 600Vdc MLI are presented to compare efficiency for low- and high-frequency modulation.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679093","citationCount":"0","resultStr":"{\"title\":\"Low Frequency Versus High Frequency PWM in Medium Voltage, High Power, Higher Level Inverters: THD, Harmonic Filtering, and Efficiency Comparison\",\"authors\":\"Rami F. Yehia;Robson B. Gonzatti;Zhehui Guo;Hui Li;Fang Z. Peng\",\"doi\":\"10.1109/OJPEL.2024.3458891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main advantages of multi-level inverters (MLI) is their ability to achieve high power quality and high efficiency power conversion. With the emergence of wide-band-gap (WBG) devices, the tendency has grown towards using high switching frequencies to improve converters’ output power quality and minimize switching harmonic filters footprint. While high-frequency switching finds significant success in low and medium-power applications, it is not the best practice to reduce the filter size when applied to medium voltage (MV) high power (HP) inverters implemented with high voltage levels. In this paper, we show that the least filtering requirements for MV HP higher level inverters is achieved using the modulation strategy with the least switching, i.e., the staircase modulation. The paper compares the harmonic filter requirements and power losses for low-frequency and high-frequency pulse-width-modulated MLI. The analysis shows that low-frequency switching not only achieves the lowest losses, but also produces the lowest line-to-line voltage total harmonic distortion (THD), which allows eliminating both voltage and current harmonic filters in higher level inverters. Simulation results are provided to verify the theoretical analysis on the THD, and experiments on a 1 kW, 600Vdc MLI are presented to compare efficiency for low- and high-frequency modulation.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679093/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679093/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多电平逆变器(MLI)的主要优势之一是能够实现高电能质量和高效率的电力转换。随着宽带隙(WBG)器件的出现,人们越来越倾向于使用高开关频率来提高转换器的输出电能质量,并最大限度地减少开关谐波滤波器的占用空间。虽然高频开关在中低功率应用中取得了巨大成功,但在中压大功率(HP)逆变器中应用高电压等级时,缩小滤波器尺寸并非最佳做法。在本文中,我们展示了中压高功率高电平逆变器使用开关最少的调制策略(即阶梯调制)时对滤波器的要求最低。本文比较了低频和高频脉宽调制 MLI 的谐波滤波器要求和功率损耗。分析表明,低频开关不仅能实现最低损耗,还能产生最低的线对线电压总谐波失真(THD),从而可以在更高级别的逆变器中消除电压和电流谐波滤波器。仿真结果验证了总谐波失真的理论分析,在 1 kW、600Vdc MLI 上进行的实验则比较了低频和高频调制的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Frequency Versus High Frequency PWM in Medium Voltage, High Power, Higher Level Inverters: THD, Harmonic Filtering, and Efficiency Comparison
One of the main advantages of multi-level inverters (MLI) is their ability to achieve high power quality and high efficiency power conversion. With the emergence of wide-band-gap (WBG) devices, the tendency has grown towards using high switching frequencies to improve converters’ output power quality and minimize switching harmonic filters footprint. While high-frequency switching finds significant success in low and medium-power applications, it is not the best practice to reduce the filter size when applied to medium voltage (MV) high power (HP) inverters implemented with high voltage levels. In this paper, we show that the least filtering requirements for MV HP higher level inverters is achieved using the modulation strategy with the least switching, i.e., the staircase modulation. The paper compares the harmonic filter requirements and power losses for low-frequency and high-frequency pulse-width-modulated MLI. The analysis shows that low-frequency switching not only achieves the lowest losses, but also produces the lowest line-to-line voltage total harmonic distortion (THD), which allows eliminating both voltage and current harmonic filters in higher level inverters. Simulation results are provided to verify the theoretical analysis on the THD, and experiments on a 1 kW, 600Vdc MLI are presented to compare efficiency for low- and high-frequency modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信