{"title":"电磁瞬态模拟器中具有直接接口的电力电子电压源转换器的恒参数平均值模型","authors":"Seyyedmilad Ebrahimi;Taleb Vahabzadeh;Juri Jatskevich","doi":"10.1109/OJPEL.2024.3456729","DOIUrl":null,"url":null,"abstract":"Average-value models (AVMs) of voltage-source converters (VSCs) are widely used as numerically efficient alternatives to their discrete switching models in electromagnetic transient (EMT) simulations. Recently, a so-called directly-interfaced AVM (DI-AVM) has been developed for VSCs, permitting large simulation time steps favorable for system-level offline and/or real-time studies. Although enabling large step sizes, the conductance/resistance matrix of the DI-AVM is time-varying and needs to be calculated at every simulation time step, which requires additional computational resources. This paper proposes a constant-parameter DI-AVM (CP-DI-AVM) for more efficient simulations of VSC-based power-electronic systems that does not require re-calculation of the network conductance matrix in EMT simulators. This is achieved by using a numerical approximation that only slightly reduces the solution accuracy. The performance of the proposed CP-DI-AVM is demonstrated on a large-scale VSC-based energy conversion system implemented in PSCAD/EMTDC. The proposed CP-DI-AVM is shown to have numerical advantages over the prior DI-AVM and the conventional AVMs of VSCs.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10670316","citationCount":"0","resultStr":"{\"title\":\"Constant-Parameter Average-Value Model of Power-Electronic Voltage-Source Converters With Direct Interface in Electromagnetic Transient Simulators\",\"authors\":\"Seyyedmilad Ebrahimi;Taleb Vahabzadeh;Juri Jatskevich\",\"doi\":\"10.1109/OJPEL.2024.3456729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Average-value models (AVMs) of voltage-source converters (VSCs) are widely used as numerically efficient alternatives to their discrete switching models in electromagnetic transient (EMT) simulations. Recently, a so-called directly-interfaced AVM (DI-AVM) has been developed for VSCs, permitting large simulation time steps favorable for system-level offline and/or real-time studies. Although enabling large step sizes, the conductance/resistance matrix of the DI-AVM is time-varying and needs to be calculated at every simulation time step, which requires additional computational resources. This paper proposes a constant-parameter DI-AVM (CP-DI-AVM) for more efficient simulations of VSC-based power-electronic systems that does not require re-calculation of the network conductance matrix in EMT simulators. This is achieved by using a numerical approximation that only slightly reduces the solution accuracy. The performance of the proposed CP-DI-AVM is demonstrated on a large-scale VSC-based energy conversion system implemented in PSCAD/EMTDC. The proposed CP-DI-AVM is shown to have numerical advantages over the prior DI-AVM and the conventional AVMs of VSCs.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10670316\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670316/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670316/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Constant-Parameter Average-Value Model of Power-Electronic Voltage-Source Converters With Direct Interface in Electromagnetic Transient Simulators
Average-value models (AVMs) of voltage-source converters (VSCs) are widely used as numerically efficient alternatives to their discrete switching models in electromagnetic transient (EMT) simulations. Recently, a so-called directly-interfaced AVM (DI-AVM) has been developed for VSCs, permitting large simulation time steps favorable for system-level offline and/or real-time studies. Although enabling large step sizes, the conductance/resistance matrix of the DI-AVM is time-varying and needs to be calculated at every simulation time step, which requires additional computational resources. This paper proposes a constant-parameter DI-AVM (CP-DI-AVM) for more efficient simulations of VSC-based power-electronic systems that does not require re-calculation of the network conductance matrix in EMT simulators. This is achieved by using a numerical approximation that only slightly reduces the solution accuracy. The performance of the proposed CP-DI-AVM is demonstrated on a large-scale VSC-based energy conversion system implemented in PSCAD/EMTDC. The proposed CP-DI-AVM is shown to have numerical advantages over the prior DI-AVM and the conventional AVMs of VSCs.