{"title":"拉格朗日平均曲率流的赫斯估计值","authors":"Arunima Bhattacharya, Jeremy Wall","doi":"10.1007/s00526-024-02812-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove interior Hessian estimates for shrinkers, expanders, translators, and rotators of the Lagrangian mean curvature flow under the assumption that the Lagrangian phase is hypercritical. We further extend our results to a broader class of Lagrangian mean curvature type equations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hessian estimates for the Lagrangian mean curvature flow\",\"authors\":\"Arunima Bhattacharya, Jeremy Wall\",\"doi\":\"10.1007/s00526-024-02812-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove interior Hessian estimates for shrinkers, expanders, translators, and rotators of the Lagrangian mean curvature flow under the assumption that the Lagrangian phase is hypercritical. We further extend our results to a broader class of Lagrangian mean curvature type equations.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02812-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02812-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Hessian estimates for the Lagrangian mean curvature flow
In this paper, we prove interior Hessian estimates for shrinkers, expanders, translators, and rotators of the Lagrangian mean curvature flow under the assumption that the Lagrangian phase is hypercritical. We further extend our results to a broader class of Lagrangian mean curvature type equations.