具有退化或奇异权重的抛物方程的 Schauder 估计数

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alessandro Audrito, Gabriele Fioravanti, Stefano Vita
{"title":"具有退化或奇异权重的抛物方程的 Schauder 估计数","authors":"Alessandro Audrito, Gabriele Fioravanti, Stefano Vita","doi":"10.1007/s00526-024-02809-2","DOIUrl":null,"url":null,"abstract":"<p>We establish some <span>\\(C^{0,\\alpha }\\)</span> and <span>\\(C^{1,\\alpha }\\)</span> regularity estimates for a class of weighted parabolic problems in divergence form. The main novelty is that the weights may vanish or explode on a characteristic hyperplane <span>\\(\\Sigma \\)</span> as a power <span>\\(a &gt; -1\\)</span> of the distance to <span>\\(\\Sigma \\)</span>. The estimates we obtain are sharp with respect to the assumptions on coefficients and data. Our methods rely on a regularization of the equation and some uniform regularity estimates combined with a Liouville theorem and an approximation argument. As a corollary of our main result, we obtain similar <span>\\(C^{1,\\alpha }\\)</span> estimates when the degeneracy/singularity of the weight occurs on a regular hypersurface of cylindrical type.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schauder estimates for parabolic equations with degenerate or singular weights\",\"authors\":\"Alessandro Audrito, Gabriele Fioravanti, Stefano Vita\",\"doi\":\"10.1007/s00526-024-02809-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish some <span>\\\\(C^{0,\\\\alpha }\\\\)</span> and <span>\\\\(C^{1,\\\\alpha }\\\\)</span> regularity estimates for a class of weighted parabolic problems in divergence form. The main novelty is that the weights may vanish or explode on a characteristic hyperplane <span>\\\\(\\\\Sigma \\\\)</span> as a power <span>\\\\(a &gt; -1\\\\)</span> of the distance to <span>\\\\(\\\\Sigma \\\\)</span>. The estimates we obtain are sharp with respect to the assumptions on coefficients and data. Our methods rely on a regularization of the equation and some uniform regularity estimates combined with a Liouville theorem and an approximation argument. As a corollary of our main result, we obtain similar <span>\\\\(C^{1,\\\\alpha }\\\\)</span> estimates when the degeneracy/singularity of the weight occurs on a regular hypersurface of cylindrical type.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02809-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02809-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们为一类发散形式的加权抛物线问题建立了一些(C^{0,\alpha }\ )和(C^{1,\alpha }\ )正则性估计。主要的新颖之处在于权重可能会消失或在特征超平面 \(\Sigma \)上爆炸,作为到 \(\Sigma \)的距离的幂 \(a > -1\) 。对于系数和数据的假设,我们得到的估计值非常精确。我们的方法依赖于方程的正则化和一些均匀正则性估计,并结合了Liouville定理和近似论证。作为我们主要结果的一个推论,当权重的退化/奇异性发生在一个规则的圆柱型超曲面上时,我们会得到类似的 (C^{1,\alpha }\ )估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schauder estimates for parabolic equations with degenerate or singular weights

We establish some \(C^{0,\alpha }\) and \(C^{1,\alpha }\) regularity estimates for a class of weighted parabolic problems in divergence form. The main novelty is that the weights may vanish or explode on a characteristic hyperplane \(\Sigma \) as a power \(a > -1\) of the distance to \(\Sigma \). The estimates we obtain are sharp with respect to the assumptions on coefficients and data. Our methods rely on a regularization of the equation and some uniform regularity estimates combined with a Liouville theorem and an approximation argument. As a corollary of our main result, we obtain similar \(C^{1,\alpha }\) estimates when the degeneracy/singularity of the weight occurs on a regular hypersurface of cylindrical type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信