通过等周不等式的加权分数波因卡雷不等式

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kim Myyryläinen, Carlos Pérez, Julian Weigt
{"title":"通过等周不等式的加权分数波因卡雷不等式","authors":"Kim Myyryläinen, Carlos Pérez, Julian Weigt","doi":"10.1007/s00526-024-02813-6","DOIUrl":null,"url":null,"abstract":"<p>Our main result is a weighted fractional Poincaré–Sobolev inequality improving the celebrated estimate by Bourgain–Brezis–Mironescu. This also yields an improvement of the classical Meyers–Ziemer theorem in several ways. The proof is based on a fractional isoperimetric inequality and is new even in the non-weighted setting. We also extend the celebrated Poincaré–Sobolev estimate with <span>\\(A_p\\)</span> weights of Fabes–Kenig–Serapioni by means of a fractional type result in the spirit of Bourgain–Brezis–Mironescu. Examples are given to show that the corresponding <span>\\(L^p\\)</span>-versions of weighted Poincaré inequalities do not hold for <span>\\(p&gt;1\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted fractional Poincaré inequalities via isoperimetric inequalities\",\"authors\":\"Kim Myyryläinen, Carlos Pérez, Julian Weigt\",\"doi\":\"10.1007/s00526-024-02813-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our main result is a weighted fractional Poincaré–Sobolev inequality improving the celebrated estimate by Bourgain–Brezis–Mironescu. This also yields an improvement of the classical Meyers–Ziemer theorem in several ways. The proof is based on a fractional isoperimetric inequality and is new even in the non-weighted setting. We also extend the celebrated Poincaré–Sobolev estimate with <span>\\\\(A_p\\\\)</span> weights of Fabes–Kenig–Serapioni by means of a fractional type result in the spirit of Bourgain–Brezis–Mironescu. Examples are given to show that the corresponding <span>\\\\(L^p\\\\)</span>-versions of weighted Poincaré inequalities do not hold for <span>\\\\(p&gt;1\\\\)</span>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02813-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02813-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们的主要结果是一个加权分数 Poincaré-Sobolev 不等式,它改进了 Bourgain-Brezis-Mironescu 的著名估计。这也从几个方面改进了经典的 Meyers-Ziemer 定理。该证明基于分数等周不等式,即使在非加权设置中也是全新的。我们还通过布尔干-布雷齐斯-米罗内斯库(Bourgain-Brezis-Mironescu)精神中的分数型结果,扩展了法贝斯-凯尼格-塞拉皮奥尼(Fabes-Kenig-Serapioni)著名的具有(A_p\)权重的庞加莱-索博列夫估计(Poincaré-Sobolev estimate)。举例说明了加权 Poincaré 不等式的相应 \(L^p\)-versions 对于 \(p>1\) 不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weighted fractional Poincaré inequalities via isoperimetric inequalities

Weighted fractional Poincaré inequalities via isoperimetric inequalities

Our main result is a weighted fractional Poincaré–Sobolev inequality improving the celebrated estimate by Bourgain–Brezis–Mironescu. This also yields an improvement of the classical Meyers–Ziemer theorem in several ways. The proof is based on a fractional isoperimetric inequality and is new even in the non-weighted setting. We also extend the celebrated Poincaré–Sobolev estimate with \(A_p\) weights of Fabes–Kenig–Serapioni by means of a fractional type result in the spirit of Bourgain–Brezis–Mironescu. Examples are given to show that the corresponding \(L^p\)-versions of weighted Poincaré inequalities do not hold for \(p>1\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信