各向异性高斯等周不等式和艾哈德对称性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kuan-Ting Yeh
{"title":"各向异性高斯等周不等式和艾哈德对称性","authors":"Kuan-Ting Yeh","doi":"10.1007/s00526-024-02818-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the isoperimetric inequality for the anisotropic Gaussian measure and characterize the cases of equality. We also find an example that shows Ehrhard symmetrization fails to decrease for the anisotropic Gaussian perimeter and gives a new inequality that includes an error term. This new inequality, in particular, gives us a hint to prove a uniqueness result for the anisotropic Ehrhard symmetrization.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The anisotropic Gaussian isoperimetric inequality and Ehrhard symmetrization\",\"authors\":\"Kuan-Ting Yeh\",\"doi\":\"10.1007/s00526-024-02818-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove the isoperimetric inequality for the anisotropic Gaussian measure and characterize the cases of equality. We also find an example that shows Ehrhard symmetrization fails to decrease for the anisotropic Gaussian perimeter and gives a new inequality that includes an error term. This new inequality, in particular, gives us a hint to prove a uniqueness result for the anisotropic Ehrhard symmetrization.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02818-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02818-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了各向异性高斯度量的等周不等式,并描述了相等的情况。我们还找到了一个例子,表明各向异性高斯周长的艾哈德对称性不能减小,并给出了一个包含误差项的新不等式。这个新不等式尤其为我们证明各向异性艾哈德对称性的唯一性结果提供了提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The anisotropic Gaussian isoperimetric inequality and Ehrhard symmetrization

In this paper, we prove the isoperimetric inequality for the anisotropic Gaussian measure and characterize the cases of equality. We also find an example that shows Ehrhard symmetrization fails to decrease for the anisotropic Gaussian perimeter and gives a new inequality that includes an error term. This new inequality, in particular, gives us a hint to prove a uniqueness result for the anisotropic Ehrhard symmetrization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信