{"title":"具有临界或亚临界指数的 $$\\mathbb {R}^N$$ 中 (p, q) - 拉普拉斯方程的多重解","authors":"Shibo Liu, Kanishka Perera","doi":"10.1007/s00526-024-02811-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the following <span>\\(\\left( p,q\\right) \\)</span>-Laplacian equation with critical exponent </p><span>$$\\begin{aligned} -\\Delta _{p}u-\\Delta _{q}u=\\lambda h(x)|u|^{r-2}u+g(x)|u|^{p^{*} -2}u \\quad \\text {in }\\mathbb {R}^{N} , \\end{aligned}$$</span><p>where <span>\\(1<q\\le p<r<p^{*}\\)</span>. After establishing <span>\\((PS)_c\\)</span> condition for <span>\\(c\\in (0,c^*)\\)</span> for a certain constant <span>\\(c^*\\)</span> by employing the concentration compactness principle of Lions, multiple solutions for <span>\\(\\lambda \\gg 1\\)</span> are obtained by applying a critical point theorem due to Perera (J Anal Math, 2023. arxiv:2308.07901). A similar problem with subcritical exponents is also considered.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for (p, q)-Laplacian equations in $$\\\\mathbb {R}^N$$ with critical or subcritical exponents\",\"authors\":\"Shibo Liu, Kanishka Perera\",\"doi\":\"10.1007/s00526-024-02811-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the following <span>\\\\(\\\\left( p,q\\\\right) \\\\)</span>-Laplacian equation with critical exponent </p><span>$$\\\\begin{aligned} -\\\\Delta _{p}u-\\\\Delta _{q}u=\\\\lambda h(x)|u|^{r-2}u+g(x)|u|^{p^{*} -2}u \\\\quad \\\\text {in }\\\\mathbb {R}^{N} , \\\\end{aligned}$$</span><p>where <span>\\\\(1<q\\\\le p<r<p^{*}\\\\)</span>. After establishing <span>\\\\((PS)_c\\\\)</span> condition for <span>\\\\(c\\\\in (0,c^*)\\\\)</span> for a certain constant <span>\\\\(c^*\\\\)</span> by employing the concentration compactness principle of Lions, multiple solutions for <span>\\\\(\\\\lambda \\\\gg 1\\\\)</span> are obtained by applying a critical point theorem due to Perera (J Anal Math, 2023. arxiv:2308.07901). A similar problem with subcritical exponents is also considered.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02811-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02811-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
where \(1<q\le p<r<p^{*}\). After establishing \((PS)_c\) condition for \(c\in (0,c^*)\) for a certain constant \(c^*\) by employing the concentration compactness principle of Lions, multiple solutions for \(\lambda \gg 1\) are obtained by applying a critical point theorem due to Perera (J Anal Math, 2023. arxiv:2308.07901). A similar problem with subcritical exponents is also considered.