Jinhai Yang, Yanhong Ye, Ruiyang Yu, Han Yang, Hui Qiao, Zongyu Huang, Xiang Qi
{"title":"基于 TiO2/Bi2Se3 异质结构的光电化学光电探测器的增强型紫外线光响应性能","authors":"Jinhai Yang, Yanhong Ye, Ruiyang Yu, Han Yang, Hui Qiao, Zongyu Huang, Xiang Qi","doi":"10.1002/pssa.202400522","DOIUrl":null,"url":null,"abstract":"Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> has a unique surface state and excellent electron transport performance, but because of its narrow band gap, Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>‐based photodetectors are difficult to achieve high response to ultraviolet (UV) light. In this paper, the TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure was constructed by spin‐coating TiO<jats:sub>2</jats:sub> on Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> film, and TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure‐based photoelectrochemical (PEC) photodetector was constructed, and a series of measurements were carried out. The measure results showed that the photoresponse performance of TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure‐based photodetector was improved in the visible region, and the performance in the UV was further improved. This is because the type ii band alignment between TiO<jats:sub>2</jats:sub> and Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> is beneficial for the effective separation and transfer of photogenerated electron‐hole pairs, reducing recombination losses and enhancing the overall photoresponse. In addition, under the action of the built‐in electric field formed by the heterostructure, the photogenerated electrons and holes are easier to separate, which reduces the recombination probability of the photogenerated electron‐hole pair and improves the photoelectric conversion efficiency. In the UV, TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure can make more efficient use of the light absorption characteristics of TiO<jats:sub>2</jats:sub> and absorb more photons, resulting in a larger photocurrent. These results indicate that TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure‐based photodetector has great application potential in the UV.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"9 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced UV Photoresponse Performances of TiO2/Bi2Se3 Heterostructure‐Based Photoelectrochemical Photodetector\",\"authors\":\"Jinhai Yang, Yanhong Ye, Ruiyang Yu, Han Yang, Hui Qiao, Zongyu Huang, Xiang Qi\",\"doi\":\"10.1002/pssa.202400522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> has a unique surface state and excellent electron transport performance, but because of its narrow band gap, Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>‐based photodetectors are difficult to achieve high response to ultraviolet (UV) light. In this paper, the TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure was constructed by spin‐coating TiO<jats:sub>2</jats:sub> on Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> film, and TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure‐based photoelectrochemical (PEC) photodetector was constructed, and a series of measurements were carried out. The measure results showed that the photoresponse performance of TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure‐based photodetector was improved in the visible region, and the performance in the UV was further improved. This is because the type ii band alignment between TiO<jats:sub>2</jats:sub> and Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> is beneficial for the effective separation and transfer of photogenerated electron‐hole pairs, reducing recombination losses and enhancing the overall photoresponse. In addition, under the action of the built‐in electric field formed by the heterostructure, the photogenerated electrons and holes are easier to separate, which reduces the recombination probability of the photogenerated electron‐hole pair and improves the photoelectric conversion efficiency. In the UV, TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure can make more efficient use of the light absorption characteristics of TiO<jats:sub>2</jats:sub> and absorb more photons, resulting in a larger photocurrent. These results indicate that TiO<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> heterostructure‐based photodetector has great application potential in the UV.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400522\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400522","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced UV Photoresponse Performances of TiO2/Bi2Se3 Heterostructure‐Based Photoelectrochemical Photodetector
Bi2Se3 has a unique surface state and excellent electron transport performance, but because of its narrow band gap, Bi2Se3‐based photodetectors are difficult to achieve high response to ultraviolet (UV) light. In this paper, the TiO2/Bi2Se3 heterostructure was constructed by spin‐coating TiO2 on Bi2Se3 film, and TiO2/Bi2Se3 heterostructure‐based photoelectrochemical (PEC) photodetector was constructed, and a series of measurements were carried out. The measure results showed that the photoresponse performance of TiO2/Bi2Se3 heterostructure‐based photodetector was improved in the visible region, and the performance in the UV was further improved. This is because the type ii band alignment between TiO2 and Bi2Se3 is beneficial for the effective separation and transfer of photogenerated electron‐hole pairs, reducing recombination losses and enhancing the overall photoresponse. In addition, under the action of the built‐in electric field formed by the heterostructure, the photogenerated electrons and holes are easier to separate, which reduces the recombination probability of the photogenerated electron‐hole pair and improves the photoelectric conversion efficiency. In the UV, TiO2/Bi2Se3 heterostructure can make more efficient use of the light absorption characteristics of TiO2 and absorb more photons, resulting in a larger photocurrent. These results indicate that TiO2/Bi2Se3 heterostructure‐based photodetector has great application potential in the UV.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.