{"title":"沟槽式平板功率 MOSFET 的晶片翘曲模型","authors":"Hiroaki Kato, Bozhou Cai, Jiuyang Yuan, Yoshiji Miyamura, Shin‐ichi Nishizawa, Wataru Saito","doi":"10.1002/pssa.202400264","DOIUrl":null,"url":null,"abstract":"A new wafer warpage model is proposed for the full process design of trench field‐plate (FP) power metal‐oxide‐semiconductor fileld‐effect transitors (MOSFETs) using large‐sized wafer. Trench FP power MOSFETs feature a deep trench and thick oxide at the wafer surface. Wafer warpage occurs due to the stress imbalance between the front and back sides of the wafer. This warpage leads to significant problems with transport errors in manufacturing equipment. This issue is expected to become even more crucial as lateral pitch narrowing is employed to reduce on‐resistance. In this study, two methods are compared to estimate the warpage of a 200 mm diameter Si‐wafer after trench etching and oxidation process. The mechanical stress generated by the oxidation process in several cell units is calculated using a 3D simulation. In the first approach, wafer warpage is converted from the displacement of the cell units. In the second approach, wafer warpage is estimated based on the surface film stress, which is calculated in the 3D simulation. The second approach shows good agreement with experimental results and is applicable to the 300 mm diameter Si process. This method yields more accurate measurements than the method using displacement.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"75 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model of Wafer Warpage for Trench Field‐Plate Power MOSFETs\",\"authors\":\"Hiroaki Kato, Bozhou Cai, Jiuyang Yuan, Yoshiji Miyamura, Shin‐ichi Nishizawa, Wataru Saito\",\"doi\":\"10.1002/pssa.202400264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new wafer warpage model is proposed for the full process design of trench field‐plate (FP) power metal‐oxide‐semiconductor fileld‐effect transitors (MOSFETs) using large‐sized wafer. Trench FP power MOSFETs feature a deep trench and thick oxide at the wafer surface. Wafer warpage occurs due to the stress imbalance between the front and back sides of the wafer. This warpage leads to significant problems with transport errors in manufacturing equipment. This issue is expected to become even more crucial as lateral pitch narrowing is employed to reduce on‐resistance. In this study, two methods are compared to estimate the warpage of a 200 mm diameter Si‐wafer after trench etching and oxidation process. The mechanical stress generated by the oxidation process in several cell units is calculated using a 3D simulation. In the first approach, wafer warpage is converted from the displacement of the cell units. In the second approach, wafer warpage is estimated based on the surface film stress, which is calculated in the 3D simulation. The second approach shows good agreement with experimental results and is applicable to the 300 mm diameter Si process. This method yields more accurate measurements than the method using displacement.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400264\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400264","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Model of Wafer Warpage for Trench Field‐Plate Power MOSFETs
A new wafer warpage model is proposed for the full process design of trench field‐plate (FP) power metal‐oxide‐semiconductor fileld‐effect transitors (MOSFETs) using large‐sized wafer. Trench FP power MOSFETs feature a deep trench and thick oxide at the wafer surface. Wafer warpage occurs due to the stress imbalance between the front and back sides of the wafer. This warpage leads to significant problems with transport errors in manufacturing equipment. This issue is expected to become even more crucial as lateral pitch narrowing is employed to reduce on‐resistance. In this study, two methods are compared to estimate the warpage of a 200 mm diameter Si‐wafer after trench etching and oxidation process. The mechanical stress generated by the oxidation process in several cell units is calculated using a 3D simulation. In the first approach, wafer warpage is converted from the displacement of the cell units. In the second approach, wafer warpage is estimated based on the surface film stress, which is calculated in the 3D simulation. The second approach shows good agreement with experimental results and is applicable to the 300 mm diameter Si process. This method yields more accurate measurements than the method using displacement.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.