在铝箔覆盖的燃烧船中,用聚乙二醇在低温下退火的安纳塔塞/金红石混合相二氧化钛纳米颗粒的光催化活性得到增强

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Retsuo Kawakami, Takumi Matsumoto, Shin‐ichiro Yanagiya, Akihiro Shirai, Yoshitaka Nakano, Masahito Niibe
{"title":"在铝箔覆盖的燃烧船中,用聚乙二醇在低温下退火的安纳塔塞/金红石混合相二氧化钛纳米颗粒的光催化活性得到增强","authors":"Retsuo Kawakami, Takumi Matsumoto, Shin‐ichiro Yanagiya, Akihiro Shirai, Yoshitaka Nakano, Masahito Niibe","doi":"10.1002/pssa.202400478","DOIUrl":null,"url":null,"abstract":"A facile carbon‐doping process is proposed to enhance the photocatalytic activity of anatase/rutile‐mixed phase TiO<jats:sub>2</jats:sub> nanoparticles using polyethylene glycol (PEG). The TiO<jats:sub>2</jats:sub>‐PEG composite is loaded into a boat and covered tightly with Al foil to increase the pressure inside that boat during annealing. The boat is annealed for 1 h at different temperatures and PEG ratios. The annealing with 30% PEG at 300 °C enhances the decomposition of organic pollutants and bacterial inactivation under 405 nm light compared to the annealing without Al films. This annealing causes 2.5–3% carbon doping, introduces more oxygen vacancies, and converts PEG into organic compounds rich in CC bond components. These modifications of TiO<jats:sub>2</jats:sub> can be attributed to carbon‐centered radicals produced from PEG during annealing. The modifications change the band structure to enhance the photogenerated carrier concentration responsible for the photocatalytic activity. The carbon doping narrows the anatase and rutile bandgaps, allowing the anatase phase to absorb 405 nm light. The introduced oxygen vacancies increase the electron‐trapping sites and raise the adsorbed oxygen groups enhancing the upward band bending and the depletion layer depth at the surface. The PEG‐converted compounds can transfer photogenerated electrons within the compounds to the TiO<jats:sub>2</jats:sub> conduction band.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Photocatalytic Activity of Anatase/Rutile‐Mixed Phase Titanium Dioxide Nanoparticles Annealed with Polyethylene Glycol at Low Temperatures in Aluminum Foil‐Covered Combustion Boats\",\"authors\":\"Retsuo Kawakami, Takumi Matsumoto, Shin‐ichiro Yanagiya, Akihiro Shirai, Yoshitaka Nakano, Masahito Niibe\",\"doi\":\"10.1002/pssa.202400478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A facile carbon‐doping process is proposed to enhance the photocatalytic activity of anatase/rutile‐mixed phase TiO<jats:sub>2</jats:sub> nanoparticles using polyethylene glycol (PEG). The TiO<jats:sub>2</jats:sub>‐PEG composite is loaded into a boat and covered tightly with Al foil to increase the pressure inside that boat during annealing. The boat is annealed for 1 h at different temperatures and PEG ratios. The annealing with 30% PEG at 300 °C enhances the decomposition of organic pollutants and bacterial inactivation under 405 nm light compared to the annealing without Al films. This annealing causes 2.5–3% carbon doping, introduces more oxygen vacancies, and converts PEG into organic compounds rich in CC bond components. These modifications of TiO<jats:sub>2</jats:sub> can be attributed to carbon‐centered radicals produced from PEG during annealing. The modifications change the band structure to enhance the photogenerated carrier concentration responsible for the photocatalytic activity. The carbon doping narrows the anatase and rutile bandgaps, allowing the anatase phase to absorb 405 nm light. The introduced oxygen vacancies increase the electron‐trapping sites and raise the adsorbed oxygen groups enhancing the upward band bending and the depletion layer depth at the surface. The PEG‐converted compounds can transfer photogenerated electrons within the compounds to the TiO<jats:sub>2</jats:sub> conduction band.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400478\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400478","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种简便的碳掺杂工艺,利用聚乙二醇(PEG)提高锐钛矿/钌混合相二氧化钛纳米粒子的光催化活性。在退火过程中,将 TiO2-PEG 复合材料装入舟中,并用铝箔紧紧覆盖,以增加舟内的压力。舟在不同温度和 PEG 比例下退火 1 小时。与不使用铝膜的退火相比,使用 30% PEG 在 300 °C 下退火可提高有机污染物的分解率,并在 405 纳米光下提高细菌灭活率。这种退火会导致 2.5-3% 的碳掺杂,引入更多的氧空位,并将 PEG 转化为富含 CC 键成分的有机化合物。TiO2 的这些变化可归因于退火过程中 PEG 产生的碳中心自由基。这些改性改变了带状结构,提高了光生载流子浓度,从而提高了光催化活性。碳掺杂缩小了锐钛矿和金红石的带隙,使得锐钛矿相能够吸收 405 nm 的光。引入的氧空位增加了电子捕获位点,提高了吸附的氧基团,从而增强了表面的上带弯曲和耗尽层深度。PEG 转化的化合物可将化合物内部光生电子转移到二氧化钛导带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Photocatalytic Activity of Anatase/Rutile‐Mixed Phase Titanium Dioxide Nanoparticles Annealed with Polyethylene Glycol at Low Temperatures in Aluminum Foil‐Covered Combustion Boats
A facile carbon‐doping process is proposed to enhance the photocatalytic activity of anatase/rutile‐mixed phase TiO2 nanoparticles using polyethylene glycol (PEG). The TiO2‐PEG composite is loaded into a boat and covered tightly with Al foil to increase the pressure inside that boat during annealing. The boat is annealed for 1 h at different temperatures and PEG ratios. The annealing with 30% PEG at 300 °C enhances the decomposition of organic pollutants and bacterial inactivation under 405 nm light compared to the annealing without Al films. This annealing causes 2.5–3% carbon doping, introduces more oxygen vacancies, and converts PEG into organic compounds rich in CC bond components. These modifications of TiO2 can be attributed to carbon‐centered radicals produced from PEG during annealing. The modifications change the band structure to enhance the photogenerated carrier concentration responsible for the photocatalytic activity. The carbon doping narrows the anatase and rutile bandgaps, allowing the anatase phase to absorb 405 nm light. The introduced oxygen vacancies increase the electron‐trapping sites and raise the adsorbed oxygen groups enhancing the upward band bending and the depletion layer depth at the surface. The PEG‐converted compounds can transfer photogenerated electrons within the compounds to the TiO2 conduction band.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信