{"title":"释放 Kesterite 太阳能电池的潜力:量子约束结构为高性能光伏技术铺平道路","authors":"Smruti Ranjan Mohanty, Chandrasekar Palanisamy, Sudarsan Sahoo, Soumyaranjan Rouray","doi":"10.1002/pssa.202400341","DOIUrl":null,"url":null,"abstract":"Advancements in solar cell research are constantly pushing the boundaries of energy efficiency and sustainability. Kesterite materials have gained attention for their positive environmental impact and are being considered as promising candidate for renewable energy. These materials show potential for improving efficiency through creative structural modifications. Quantum well (QW) solar cells, utilizing kesterite materials, provide a combination of high efficiency, cost‐effectiveness, and environmental sustainability. These materials have a wide range of applications, from residential and commercial solar panels to portable and flexible devices, building‐integrated photovoltaics, off‐grid systems, and even space applications. This study investigates the improvement of solar cell efficiency by incorporating kesterite‐based nanostructures with quantum confinement technology. The key aspects of the analysis are measure performance of solar cell with variation in S/Se mole fraction of CZTSSe absorber layer. The special care is given to analyze behavior of QW structures with CZTSSe as the well material. Additionally, the study is expanded to an analysis of broad range of mole fraction variation in CZTSSe. Finally, the structure is optimized by adjusting the well width. Moreover, a remarkable efficiency of 31.33% is achieved with well width of 20 nm and the mole fraction of 0.8. This finding highlights the importance of customizing composition and nanostructure in solar cell design to improve efficiency and push forward renewable energy technologies.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"49 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Potential of Kesterite Solar Cells: Quantum Confinement Structures to Pave the Way for High‐Performance Photovoltaic Technologies\",\"authors\":\"Smruti Ranjan Mohanty, Chandrasekar Palanisamy, Sudarsan Sahoo, Soumyaranjan Rouray\",\"doi\":\"10.1002/pssa.202400341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in solar cell research are constantly pushing the boundaries of energy efficiency and sustainability. Kesterite materials have gained attention for their positive environmental impact and are being considered as promising candidate for renewable energy. These materials show potential for improving efficiency through creative structural modifications. Quantum well (QW) solar cells, utilizing kesterite materials, provide a combination of high efficiency, cost‐effectiveness, and environmental sustainability. These materials have a wide range of applications, from residential and commercial solar panels to portable and flexible devices, building‐integrated photovoltaics, off‐grid systems, and even space applications. This study investigates the improvement of solar cell efficiency by incorporating kesterite‐based nanostructures with quantum confinement technology. The key aspects of the analysis are measure performance of solar cell with variation in S/Se mole fraction of CZTSSe absorber layer. The special care is given to analyze behavior of QW structures with CZTSSe as the well material. Additionally, the study is expanded to an analysis of broad range of mole fraction variation in CZTSSe. Finally, the structure is optimized by adjusting the well width. Moreover, a remarkable efficiency of 31.33% is achieved with well width of 20 nm and the mole fraction of 0.8. This finding highlights the importance of customizing composition and nanostructure in solar cell design to improve efficiency and push forward renewable energy technologies.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400341\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400341","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unlocking the Potential of Kesterite Solar Cells: Quantum Confinement Structures to Pave the Way for High‐Performance Photovoltaic Technologies
Advancements in solar cell research are constantly pushing the boundaries of energy efficiency and sustainability. Kesterite materials have gained attention for their positive environmental impact and are being considered as promising candidate for renewable energy. These materials show potential for improving efficiency through creative structural modifications. Quantum well (QW) solar cells, utilizing kesterite materials, provide a combination of high efficiency, cost‐effectiveness, and environmental sustainability. These materials have a wide range of applications, from residential and commercial solar panels to portable and flexible devices, building‐integrated photovoltaics, off‐grid systems, and even space applications. This study investigates the improvement of solar cell efficiency by incorporating kesterite‐based nanostructures with quantum confinement technology. The key aspects of the analysis are measure performance of solar cell with variation in S/Se mole fraction of CZTSSe absorber layer. The special care is given to analyze behavior of QW structures with CZTSSe as the well material. Additionally, the study is expanded to an analysis of broad range of mole fraction variation in CZTSSe. Finally, the structure is optimized by adjusting the well width. Moreover, a remarkable efficiency of 31.33% is achieved with well width of 20 nm and the mole fraction of 0.8. This finding highlights the importance of customizing composition and nanostructure in solar cell design to improve efficiency and push forward renewable energy technologies.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.