纳米晶 Sm4ZrFe33 合金的微结构和磁特性

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Riadh Fersi, Apolo Palarizato Dalia
{"title":"纳米晶 Sm4ZrFe33 合金的微结构和磁特性","authors":"Riadh Fersi, Apolo Palarizato Dalia","doi":"10.1002/pssa.202400516","DOIUrl":null,"url":null,"abstract":"This work focuses on the study of the microstructure and magnetic properties of nanocrystalline powders of Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub>, prepared by high‐energy ball milling. The Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub> compound adopts a monoclinic structure (space group Cm). Upon annealing, these Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub> samples exhibit notable variations in their extrinsic magnetic properties, closely linked to temperature fluctuations. The investigation delves into the correlation between morphology, grain size and magnetic characteristics. A significant enhancement in coercivity (<jats:italic>H</jats:italic><jats:sub>c</jats:sub>), remanent magnetization (<jats:italic>M</jats:italic><jats:sub>r</jats:sub>), and maximum energy product ((<jats:italic>BH</jats:italic>)<jats:sub>max</jats:sub>) is observed, primarily attributed to the finer grain structure present in the samples. Particularly noteworthy, among all annealed specimens, the nanocrystalline Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub> compound annealed at a temperature of <jats:italic>T</jats:italic><jats:sub>a</jats:sub> = 973 K demonstrates the most promising magnetic properties. This specimen exhibits a coercivity <jats:italic>H</jats:italic><jats:sub>c</jats:sub> of 18 500 Oe, remanent magnetization (<jats:italic>M</jats:italic><jats:sub>r</jats:sub>) of 58 emu g<jats:sup>−1</jats:sup>, maximum energy product ((<jats:italic>BH</jats:italic>)<jats:sub>max</jats:sub>) of 5.18 MGOe, Curie temperature (<jats:italic>T</jats:italic><jats:sub>C</jats:sub>) of ≈804 K, and magnetic anisotropy field (<jats:italic>H</jats:italic><jats:sub>a</jats:sub>) of 115 980 Oe. These research findings pave the way for future investigations and applications in the realm of permanent magnets, spintronic devices, and magnetic recording, utilizing nanocrystalline alloys based on the Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub> compound.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"2 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural and Magnetic Characteristics of Nanocrystalline Sm4ZrFe33 Alloys\",\"authors\":\"Riadh Fersi, Apolo Palarizato Dalia\",\"doi\":\"10.1002/pssa.202400516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the study of the microstructure and magnetic properties of nanocrystalline powders of Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub>, prepared by high‐energy ball milling. The Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub> compound adopts a monoclinic structure (space group Cm). Upon annealing, these Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub> samples exhibit notable variations in their extrinsic magnetic properties, closely linked to temperature fluctuations. The investigation delves into the correlation between morphology, grain size and magnetic characteristics. A significant enhancement in coercivity (<jats:italic>H</jats:italic><jats:sub>c</jats:sub>), remanent magnetization (<jats:italic>M</jats:italic><jats:sub>r</jats:sub>), and maximum energy product ((<jats:italic>BH</jats:italic>)<jats:sub>max</jats:sub>) is observed, primarily attributed to the finer grain structure present in the samples. Particularly noteworthy, among all annealed specimens, the nanocrystalline Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub> compound annealed at a temperature of <jats:italic>T</jats:italic><jats:sub>a</jats:sub> = 973 K demonstrates the most promising magnetic properties. This specimen exhibits a coercivity <jats:italic>H</jats:italic><jats:sub>c</jats:sub> of 18 500 Oe, remanent magnetization (<jats:italic>M</jats:italic><jats:sub>r</jats:sub>) of 58 emu g<jats:sup>−1</jats:sup>, maximum energy product ((<jats:italic>BH</jats:italic>)<jats:sub>max</jats:sub>) of 5.18 MGOe, Curie temperature (<jats:italic>T</jats:italic><jats:sub>C</jats:sub>) of ≈804 K, and magnetic anisotropy field (<jats:italic>H</jats:italic><jats:sub>a</jats:sub>) of 115 980 Oe. These research findings pave the way for future investigations and applications in the realm of permanent magnets, spintronic devices, and magnetic recording, utilizing nanocrystalline alloys based on the Sm<jats:sub>4</jats:sub>ZrFe<jats:sub>3</jats:sub><jats:sub>3</jats:sub> compound.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400516\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400516","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的重点是研究通过高能球磨法制备的 Sm4ZrFe33 纳米晶粉末的微观结构和磁性能。Sm4ZrFe33 复合物采用单斜结构(空间群 Cm)。退火后,这些 Sm4ZrFe33 样品的外磁性能会出现明显变化,这与温度波动密切相关。研究深入探讨了形态、晶粒大小和磁性特征之间的相关性。观察到矫顽力(Hc)、剩磁(Mr)和最大能积((BH)max)明显增强,这主要归因于样品中存在更精细的晶粒结构。特别值得注意的是,在所有退火试样中,在 Ta = 973 K 温度下退火的纳米晶 Sm4ZrFe33 复合物显示出最有前途的磁性能。该试样的矫顽力 Hc 为 18 500 Oe,剩磁(Mr)为 58 emu g-1,最大能积((BH)max)为 5.18 MGOe,居里温度(TC)≈804 K,磁各向异性场(Ha)为 115 980 Oe。这些研究成果为未来利用基于 Sm4ZrFe33 化合物的纳米晶合金在永磁体、自旋电子器件和磁记录领域进行研究和应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural and Magnetic Characteristics of Nanocrystalline Sm4ZrFe33 Alloys
This work focuses on the study of the microstructure and magnetic properties of nanocrystalline powders of Sm4ZrFe33, prepared by high‐energy ball milling. The Sm4ZrFe33 compound adopts a monoclinic structure (space group Cm). Upon annealing, these Sm4ZrFe33 samples exhibit notable variations in their extrinsic magnetic properties, closely linked to temperature fluctuations. The investigation delves into the correlation between morphology, grain size and magnetic characteristics. A significant enhancement in coercivity (Hc), remanent magnetization (Mr), and maximum energy product ((BH)max) is observed, primarily attributed to the finer grain structure present in the samples. Particularly noteworthy, among all annealed specimens, the nanocrystalline Sm4ZrFe33 compound annealed at a temperature of Ta = 973 K demonstrates the most promising magnetic properties. This specimen exhibits a coercivity Hc of 18 500 Oe, remanent magnetization (Mr) of 58 emu g−1, maximum energy product ((BH)max) of 5.18 MGOe, Curie temperature (TC) of ≈804 K, and magnetic anisotropy field (Ha) of 115 980 Oe. These research findings pave the way for future investigations and applications in the realm of permanent magnets, spintronic devices, and magnetic recording, utilizing nanocrystalline alloys based on the Sm4ZrFe33 compound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信