Aline Medeiros Saavedra, Tatiana Carvalho de Castro, Davyson de Lima Moreira, Rubens Diego de Carvalho Castilho, Norma Albarello, Claudia Simões-Gurgel
{"title":"建立巴西大西洋森林特有物种 Tarenaya atropurpurea (Schott) Soares Neto & Roalson(克利莫科)的离体根培养基并对其进行植物化学评估","authors":"Aline Medeiros Saavedra, Tatiana Carvalho de Castro, Davyson de Lima Moreira, Rubens Diego de Carvalho Castilho, Norma Albarello, Claudia Simões-Gurgel","doi":"10.1007/s11240-024-02847-w","DOIUrl":null,"url":null,"abstract":"<p>This study established in vitro root cultures of <i>Tarenaya atropurpurea</i> from root segments of seedlings and from in vitro propagated plants. Moreover, culture conditions were manipulated aiming to optimize root biomass accumulation and shoot regeneration from newly formed roots was determined. A phytochemical assessment was performed using two extraction methods — dynamic maceration (DM) and ultrasonic assisted extraction (UAE) — and two chromatographic methods for extract analysis (TLC and HPLC). MS medium supplemented with 3.0 mg.L<sup>− 1</sup> of indole-3-butyric acid (IBA) induced the highest root multiplication. Root cultures initiated from seedling explants achieved higher biomass accumulation. However, improved root multiplication was achieved using explants from in vitro propagated plants in an optimized culture formulation called Optimum Root Culture Medium (ORCM), which combines MS medium with 1/4 concentration of mineral salts + 3.0 mg.L<sup>− 1</sup> IBA + 70 g.L<sup>− 1</sup> sucrose, pH 6.5, stirring speed at 130 r.p.m., and 16 h/light. Shoot regeneration from newly formed roots was successfully obtained on MS containing 6-benzylaminopurine (BA). Analysis by TLC suggests the presence of saponins, mainly in root extracts, with the most intense bands acquired by UAE, while HPLC analysis suggests the presence of flavonoids in extracts from aerial parts, with intense signals in extracts obtained by DM. This study was able to establish in vitro root cultures of <i>T. atropurpurea</i> and optimize root biomass accumulation through the manipulation of culture conditions. Phytochemical assessment indicated the presence of saponins and flavonoids, demonstrating potential commercial use of in vitro cultures to produce secondary metabolites in <i>T. atropurpurea</i>.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of in vitro root cultures and phytochemical assessment of Tarenaya atropurpurea (Schott) Soares Neto & Roalson (Cleomaceae) — an endemic species of the Brazilian Atlantic Forest\",\"authors\":\"Aline Medeiros Saavedra, Tatiana Carvalho de Castro, Davyson de Lima Moreira, Rubens Diego de Carvalho Castilho, Norma Albarello, Claudia Simões-Gurgel\",\"doi\":\"10.1007/s11240-024-02847-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study established in vitro root cultures of <i>Tarenaya atropurpurea</i> from root segments of seedlings and from in vitro propagated plants. Moreover, culture conditions were manipulated aiming to optimize root biomass accumulation and shoot regeneration from newly formed roots was determined. A phytochemical assessment was performed using two extraction methods — dynamic maceration (DM) and ultrasonic assisted extraction (UAE) — and two chromatographic methods for extract analysis (TLC and HPLC). MS medium supplemented with 3.0 mg.L<sup>− 1</sup> of indole-3-butyric acid (IBA) induced the highest root multiplication. Root cultures initiated from seedling explants achieved higher biomass accumulation. However, improved root multiplication was achieved using explants from in vitro propagated plants in an optimized culture formulation called Optimum Root Culture Medium (ORCM), which combines MS medium with 1/4 concentration of mineral salts + 3.0 mg.L<sup>− 1</sup> IBA + 70 g.L<sup>− 1</sup> sucrose, pH 6.5, stirring speed at 130 r.p.m., and 16 h/light. Shoot regeneration from newly formed roots was successfully obtained on MS containing 6-benzylaminopurine (BA). Analysis by TLC suggests the presence of saponins, mainly in root extracts, with the most intense bands acquired by UAE, while HPLC analysis suggests the presence of flavonoids in extracts from aerial parts, with intense signals in extracts obtained by DM. This study was able to establish in vitro root cultures of <i>T. atropurpurea</i> and optimize root biomass accumulation through the manipulation of culture conditions. Phytochemical assessment indicated the presence of saponins and flavonoids, demonstrating potential commercial use of in vitro cultures to produce secondary metabolites in <i>T. atropurpurea</i>.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11240-024-02847-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02847-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本研究利用幼苗根部和离体繁殖植株建立了 Tarenaya atropurpurea 的离体根部培养。此外,还对培养条件进行了调整,以优化根部生物量的积累,并确定了新生根的芽再生情况。植物化学评估采用了两种提取方法--动态浸渍(DM)和超声波辅助提取(UAE)--以及两种提取物分析色谱法(TLC 和 HPLC)。添加了 3.0 mg.L- 1 的吲哚-3-丁酸(IBA)的 MS 培养基诱导的根繁殖率最高。从幼苗外植体开始的根培养获得了更高的生物量积累。然而,使用体外繁殖植株的外植体,在优化的根培养基(ORCM)中实现了更高的根繁殖率。ORCM 由含有 1/4 浓度矿物盐的 MS 培养基 + 3.0 mg.L- 1 IBA + 70 g.L- 1 蔗糖组成,pH 值为 6.5,搅拌速度为 130 r.p.m.,光照时间为 16 h。在含有 6-苄基氨基嘌呤(BA)的 MS 上,成功地从新形成的根中获得了嫩枝再生。TLC 分析表明,皂苷主要存在于根部提取物中,UAE 获得的条带最强烈;HPLC 分析表明,黄酮类化合物存在于气生部分的提取物中,DM 获得的提取物信号强烈。本研究能够建立 T. atropurpurea 的离体根培养,并通过调节培养条件优化根的生物量积累。植物化学评估表明存在皂苷和黄酮类化合物,这表明体外培养物具有商业用途,可用于生产托布津的次生代谢产物。
Establishment of in vitro root cultures and phytochemical assessment of Tarenaya atropurpurea (Schott) Soares Neto & Roalson (Cleomaceae) — an endemic species of the Brazilian Atlantic Forest
This study established in vitro root cultures of Tarenaya atropurpurea from root segments of seedlings and from in vitro propagated plants. Moreover, culture conditions were manipulated aiming to optimize root biomass accumulation and shoot regeneration from newly formed roots was determined. A phytochemical assessment was performed using two extraction methods — dynamic maceration (DM) and ultrasonic assisted extraction (UAE) — and two chromatographic methods for extract analysis (TLC and HPLC). MS medium supplemented with 3.0 mg.L− 1 of indole-3-butyric acid (IBA) induced the highest root multiplication. Root cultures initiated from seedling explants achieved higher biomass accumulation. However, improved root multiplication was achieved using explants from in vitro propagated plants in an optimized culture formulation called Optimum Root Culture Medium (ORCM), which combines MS medium with 1/4 concentration of mineral salts + 3.0 mg.L− 1 IBA + 70 g.L− 1 sucrose, pH 6.5, stirring speed at 130 r.p.m., and 16 h/light. Shoot regeneration from newly formed roots was successfully obtained on MS containing 6-benzylaminopurine (BA). Analysis by TLC suggests the presence of saponins, mainly in root extracts, with the most intense bands acquired by UAE, while HPLC analysis suggests the presence of flavonoids in extracts from aerial parts, with intense signals in extracts obtained by DM. This study was able to establish in vitro root cultures of T. atropurpurea and optimize root biomass accumulation through the manipulation of culture conditions. Phytochemical assessment indicated the presence of saponins and flavonoids, demonstrating potential commercial use of in vitro cultures to produce secondary metabolites in T. atropurpurea.