Han Gao, Long Qin, Shifei Tao, Ziming Xiong, Fan Wu, Ming Lei
{"title":"用于高效电磁波吸收的稀土氧化物多重调谐碳纳米管","authors":"Han Gao, Long Qin, Shifei Tao, Ziming Xiong, Fan Wu, Ming Lei","doi":"10.1007/s42114-024-00946-y","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing high dielectric constant materials is a promising strategy for manufacturing efficient electromagnetic wave absorbing materials, which aims to fully exploit the performance advantages of micro-nano materials and overcome the adverse effects at low scales. This requires reasonable and meticulous component optimization. The low-cost and environmentally friendly fillers possess significant advantages. In this work, two specifications of carbon nanotubes (CNTs) are selected as the research objects. A simple solvothermal method is used to compound rare earth oxides (REO). Finally, CNTs/REO composites are prepared. The effects of different particle sizes on the electromagnetic wave absorption properties of the system are studied in detail from the microscopic morphology. Improve the interface effect and impedance matching in the system. When the filling amount is 30 wt.%, the minimum reflection loss (RL<sub>min</sub>) can reach − 69.94 dB, and the effective absorption bandwidth (EAB) is widened from 3.00 to 5.20 GHz. The huge performance span is attributed to the optimization of REO nanoparticles in the regulation of CNTs from morphology structure to electromagnetic parameters. The interfacial polarization, dielectric polarization, and dipole relaxation are improved significantly. The excellent electromagnetic wave absorption performance makes CNTs/REO have great application prospects in electronic devices. In addition, radar cross section (RCS) simulation provides theoretical support for the practical application of CNTs/REO composites.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple tuned carbon nanotubes by rare earth oxides for high-efficiency electromagnetic wave absorption\",\"authors\":\"Han Gao, Long Qin, Shifei Tao, Ziming Xiong, Fan Wu, Ming Lei\",\"doi\":\"10.1007/s42114-024-00946-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing high dielectric constant materials is a promising strategy for manufacturing efficient electromagnetic wave absorbing materials, which aims to fully exploit the performance advantages of micro-nano materials and overcome the adverse effects at low scales. This requires reasonable and meticulous component optimization. The low-cost and environmentally friendly fillers possess significant advantages. In this work, two specifications of carbon nanotubes (CNTs) are selected as the research objects. A simple solvothermal method is used to compound rare earth oxides (REO). Finally, CNTs/REO composites are prepared. The effects of different particle sizes on the electromagnetic wave absorption properties of the system are studied in detail from the microscopic morphology. Improve the interface effect and impedance matching in the system. When the filling amount is 30 wt.%, the minimum reflection loss (RL<sub>min</sub>) can reach − 69.94 dB, and the effective absorption bandwidth (EAB) is widened from 3.00 to 5.20 GHz. The huge performance span is attributed to the optimization of REO nanoparticles in the regulation of CNTs from morphology structure to electromagnetic parameters. The interfacial polarization, dielectric polarization, and dipole relaxation are improved significantly. The excellent electromagnetic wave absorption performance makes CNTs/REO have great application prospects in electronic devices. In addition, radar cross section (RCS) simulation provides theoretical support for the practical application of CNTs/REO composites.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00946-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00946-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Multiple tuned carbon nanotubes by rare earth oxides for high-efficiency electromagnetic wave absorption
Optimizing high dielectric constant materials is a promising strategy for manufacturing efficient electromagnetic wave absorbing materials, which aims to fully exploit the performance advantages of micro-nano materials and overcome the adverse effects at low scales. This requires reasonable and meticulous component optimization. The low-cost and environmentally friendly fillers possess significant advantages. In this work, two specifications of carbon nanotubes (CNTs) are selected as the research objects. A simple solvothermal method is used to compound rare earth oxides (REO). Finally, CNTs/REO composites are prepared. The effects of different particle sizes on the electromagnetic wave absorption properties of the system are studied in detail from the microscopic morphology. Improve the interface effect and impedance matching in the system. When the filling amount is 30 wt.%, the minimum reflection loss (RLmin) can reach − 69.94 dB, and the effective absorption bandwidth (EAB) is widened from 3.00 to 5.20 GHz. The huge performance span is attributed to the optimization of REO nanoparticles in the regulation of CNTs from morphology structure to electromagnetic parameters. The interfacial polarization, dielectric polarization, and dipole relaxation are improved significantly. The excellent electromagnetic wave absorption performance makes CNTs/REO have great application prospects in electronic devices. In addition, radar cross section (RCS) simulation provides theoretical support for the practical application of CNTs/REO composites.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.