Tianjiao Geng, Haitao Xue, Can Kong, Luping He, Shuping Wang, Ling Ding, Xiaoyan Zou, Zhichun Gu, Hongze Liao, Houwen Lin
{"title":"海洋生物碱aptamine的制剂前研究:理化性质研究和治疗肝细胞癌的脂质体配方开发","authors":"Tianjiao Geng, Haitao Xue, Can Kong, Luping He, Shuping Wang, Ling Ding, Xiaoyan Zou, Zhichun Gu, Hongze Liao, Houwen Lin","doi":"10.1002/ejlt.202400102","DOIUrl":null,"url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is a global health concern with high prevalence and mortality. A marine alkaloid, AP-427, has been reported to show potential for HCC treatment. However, its use is limited by low solubility and high toxicity. We aimed to investigate the preformulation parameters and develop AP-427 liposomes to improve its clinical suitability. A stability-indicating HPLC assay was established, and the physicochemical properties of AP-427 were analyzed. Afterward, AP-427 liposomes were prepared and characterized, and their cytotoxicity was evaluated. AP-427 had a low solubility at physiological pH, a LogD of 2.56 ± 0.03, and a basic pKa of 3.24 ± 0.12. An entrapment efficiency of 52.71 ± 3.2% was achieved after optimization. The resulting AP-427 liposomes were 147.2 ± 3.4 nm and stable up to three months when stored in a pellet form at 4°C. The crystallization of AP-427 in liposomes became less ordered, and AP-427 liposomes exhibited a controlled release fitted in Korsmeyer–Peppas model, indicating the release was driven by diffusion. Furthermore, AP-427 liposomes showed a 3.6 times reduced cytotoxicity against HepG2 cells compared with free AP-427, potentially enhancing its antitumor efficacy. In conclusion, the precise preformulation parameters advanced the AP-427 liposomal formulation development, which showed potential for HCC treatment.</p><p><i>Practical Applications</i>: The aaptamine derivative AP-427 has shown cytotoxic effects against hepatocellular carcinoma. However, the low solubility and high toxicity limit its clinical application. The present study aims to prepare liposomal formulation to solve the current problems. Results obtained from this study shed light on challenges related to drug solubility and have paved the way for the development of an effective AP-427 liposomal formulation with promising application in hepatocellular carcinoma therapy.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":"126 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A preformulation study of marine alkaloid aaptamine: Physicochemical properties investigation and liposomal formulation development toward hepatocellular carcinoma treatment\",\"authors\":\"Tianjiao Geng, Haitao Xue, Can Kong, Luping He, Shuping Wang, Ling Ding, Xiaoyan Zou, Zhichun Gu, Hongze Liao, Houwen Lin\",\"doi\":\"10.1002/ejlt.202400102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hepatocellular carcinoma (HCC) is a global health concern with high prevalence and mortality. A marine alkaloid, AP-427, has been reported to show potential for HCC treatment. However, its use is limited by low solubility and high toxicity. We aimed to investigate the preformulation parameters and develop AP-427 liposomes to improve its clinical suitability. A stability-indicating HPLC assay was established, and the physicochemical properties of AP-427 were analyzed. Afterward, AP-427 liposomes were prepared and characterized, and their cytotoxicity was evaluated. AP-427 had a low solubility at physiological pH, a LogD of 2.56 ± 0.03, and a basic pKa of 3.24 ± 0.12. An entrapment efficiency of 52.71 ± 3.2% was achieved after optimization. The resulting AP-427 liposomes were 147.2 ± 3.4 nm and stable up to three months when stored in a pellet form at 4°C. The crystallization of AP-427 in liposomes became less ordered, and AP-427 liposomes exhibited a controlled release fitted in Korsmeyer–Peppas model, indicating the release was driven by diffusion. Furthermore, AP-427 liposomes showed a 3.6 times reduced cytotoxicity against HepG2 cells compared with free AP-427, potentially enhancing its antitumor efficacy. In conclusion, the precise preformulation parameters advanced the AP-427 liposomal formulation development, which showed potential for HCC treatment.</p><p><i>Practical Applications</i>: The aaptamine derivative AP-427 has shown cytotoxic effects against hepatocellular carcinoma. However, the low solubility and high toxicity limit its clinical application. The present study aims to prepare liposomal formulation to solve the current problems. Results obtained from this study shed light on challenges related to drug solubility and have paved the way for the development of an effective AP-427 liposomal formulation with promising application in hepatocellular carcinoma therapy.</p>\",\"PeriodicalId\":11988,\"journal\":{\"name\":\"European Journal of Lipid Science and Technology\",\"volume\":\"126 11\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Lipid Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202400102\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202400102","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A preformulation study of marine alkaloid aaptamine: Physicochemical properties investigation and liposomal formulation development toward hepatocellular carcinoma treatment
Hepatocellular carcinoma (HCC) is a global health concern with high prevalence and mortality. A marine alkaloid, AP-427, has been reported to show potential for HCC treatment. However, its use is limited by low solubility and high toxicity. We aimed to investigate the preformulation parameters and develop AP-427 liposomes to improve its clinical suitability. A stability-indicating HPLC assay was established, and the physicochemical properties of AP-427 were analyzed. Afterward, AP-427 liposomes were prepared and characterized, and their cytotoxicity was evaluated. AP-427 had a low solubility at physiological pH, a LogD of 2.56 ± 0.03, and a basic pKa of 3.24 ± 0.12. An entrapment efficiency of 52.71 ± 3.2% was achieved after optimization. The resulting AP-427 liposomes were 147.2 ± 3.4 nm and stable up to three months when stored in a pellet form at 4°C. The crystallization of AP-427 in liposomes became less ordered, and AP-427 liposomes exhibited a controlled release fitted in Korsmeyer–Peppas model, indicating the release was driven by diffusion. Furthermore, AP-427 liposomes showed a 3.6 times reduced cytotoxicity against HepG2 cells compared with free AP-427, potentially enhancing its antitumor efficacy. In conclusion, the precise preformulation parameters advanced the AP-427 liposomal formulation development, which showed potential for HCC treatment.
Practical Applications: The aaptamine derivative AP-427 has shown cytotoxic effects against hepatocellular carcinoma. However, the low solubility and high toxicity limit its clinical application. The present study aims to prepare liposomal formulation to solve the current problems. Results obtained from this study shed light on challenges related to drug solubility and have paved the way for the development of an effective AP-427 liposomal formulation with promising application in hepatocellular carcinoma therapy.
期刊介绍:
The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects.
Following is a selection of subject areas which are of special interest to EJLST:
Animal and plant products for healthier foods including strategic feeding and transgenic crops
Authentication and analysis of foods for ensuring food quality and safety
Bioavailability of PUFA and other nutrients
Dietary lipids and minor compounds, their specific roles in food products and in nutrition
Food technology and processing for safer and healthier products
Functional foods and nutraceuticals
Lipidomics
Lipid structuring and formulations
Oleochemistry, lipid-derived polymers and biomaterials
Processes using lipid-modifying enzymes
The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).