{"title":"用于治疗胶质瘤的时空可控系统的最新进展","authors":"","doi":"10.1016/j.ajps.2024.100954","DOIUrl":null,"url":null,"abstract":"<div><div>Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in spatio-temporally controllable systems for management of glioma\",\"authors\":\"\",\"doi\":\"10.1016/j.ajps.2024.100954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.</div></div>\",\"PeriodicalId\":8539,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1818087624000710\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624000710","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Recent advances in spatio-temporally controllable systems for management of glioma
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.