{"title":"溶液加工碳酸铯对 Cu(In,Ga)Se2 薄膜太阳能电池的影响","authors":"Ishwor Khatri, Alec P. LaGrow, Oleksandr Bondarchuk, Nicoleta Nicoara, Sascha Sadewasser","doi":"10.1002/pip.3838","DOIUrl":null,"url":null,"abstract":"<p>Heavy alkali-metal treatments have been the most recent breakthrough in improving the efficiency of Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells. Alkali halides are generally evaporated onto the surface of the CIGS thin film by a vacuum process. Here, we report an alternative, low-cost solution process for the surface treatment of CIGS thin films using cesium carbonate (CsCO<sub>3</sub>) as a new route to incorporate cesium (Cs) for improving solar cell performance. CIGS thin films were fabricated using pulsed hybrid reactive magnetron sputtering and the surface treatment was performed by spin-coating CsCO<sub>3</sub> solution on the surface of CIGS at room temperature, followed by vacuum annealing at 400°C. The surface chemistry of the CIGS thin film changed after the treatment and the efficiency of respective solar cells improved by more than 30%, mostly driven by an enhancement in open-circuit voltage. X-ray photoelectron spectroscopy revealed the depletion of copper and the presence of Cs on the surface of the CIGS thin film. Ultraviolet photoelectron spectroscopy showed the lowering of the valence band maximum by around 0.25 eV after the treatment, which plays a positive role in reducing interfacial recombination. High-resolution transmission electron microscopy indicates the presence of Cs and depletion of Cu at the grain boundaries of the CIGS thin film. These findings open a low-cost route for improving the performance of CIGS solar cells by surface modification using a solution process.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 12","pages":"864-871"},"PeriodicalIF":8.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3838","citationCount":"0","resultStr":"{\"title\":\"Effect of solution-processed cesium carbonate on Cu(In,Ga)Se2 thin-film solar cells\",\"authors\":\"Ishwor Khatri, Alec P. LaGrow, Oleksandr Bondarchuk, Nicoleta Nicoara, Sascha Sadewasser\",\"doi\":\"10.1002/pip.3838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heavy alkali-metal treatments have been the most recent breakthrough in improving the efficiency of Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells. Alkali halides are generally evaporated onto the surface of the CIGS thin film by a vacuum process. Here, we report an alternative, low-cost solution process for the surface treatment of CIGS thin films using cesium carbonate (CsCO<sub>3</sub>) as a new route to incorporate cesium (Cs) for improving solar cell performance. CIGS thin films were fabricated using pulsed hybrid reactive magnetron sputtering and the surface treatment was performed by spin-coating CsCO<sub>3</sub> solution on the surface of CIGS at room temperature, followed by vacuum annealing at 400°C. The surface chemistry of the CIGS thin film changed after the treatment and the efficiency of respective solar cells improved by more than 30%, mostly driven by an enhancement in open-circuit voltage. X-ray photoelectron spectroscopy revealed the depletion of copper and the presence of Cs on the surface of the CIGS thin film. Ultraviolet photoelectron spectroscopy showed the lowering of the valence band maximum by around 0.25 eV after the treatment, which plays a positive role in reducing interfacial recombination. High-resolution transmission electron microscopy indicates the presence of Cs and depletion of Cu at the grain boundaries of the CIGS thin film. These findings open a low-cost route for improving the performance of CIGS solar cells by surface modification using a solution process.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 12\",\"pages\":\"864-871\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3838\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3838\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3838","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of solution-processed cesium carbonate on Cu(In,Ga)Se2 thin-film solar cells
Heavy alkali-metal treatments have been the most recent breakthrough in improving the efficiency of Cu(In,Ga)Se2 (CIGS) solar cells. Alkali halides are generally evaporated onto the surface of the CIGS thin film by a vacuum process. Here, we report an alternative, low-cost solution process for the surface treatment of CIGS thin films using cesium carbonate (CsCO3) as a new route to incorporate cesium (Cs) for improving solar cell performance. CIGS thin films were fabricated using pulsed hybrid reactive magnetron sputtering and the surface treatment was performed by spin-coating CsCO3 solution on the surface of CIGS at room temperature, followed by vacuum annealing at 400°C. The surface chemistry of the CIGS thin film changed after the treatment and the efficiency of respective solar cells improved by more than 30%, mostly driven by an enhancement in open-circuit voltage. X-ray photoelectron spectroscopy revealed the depletion of copper and the presence of Cs on the surface of the CIGS thin film. Ultraviolet photoelectron spectroscopy showed the lowering of the valence band maximum by around 0.25 eV after the treatment, which plays a positive role in reducing interfacial recombination. High-resolution transmission electron microscopy indicates the presence of Cs and depletion of Cu at the grain boundaries of the CIGS thin film. These findings open a low-cost route for improving the performance of CIGS solar cells by surface modification using a solution process.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.