垂直温度梯度对大气薄层等效深度的影响

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Yair De-Leon, Chaim I. Garfinkel, Nathan Paldor
{"title":"垂直温度梯度对大气薄层等效深度的影响","authors":"Yair De-Leon,&nbsp;Chaim I. Garfinkel,&nbsp;Nathan Paldor","doi":"10.1002/asl.1259","DOIUrl":null,"url":null,"abstract":"<p>The equivalent depth of an atmospheric layer is of importance in determining the phase speed of gravity waves and characterizing wave phenomena. The value of the equivalent depth can be obtained from the eigenvalues of the vertical structure equation (the vertical part of the primitive equations) where the mean temperature profile is a coefficient. Both numerical solutions of the vertical structure equation and analytical considerations are employed to calculate the equivalent depth, <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>n</mi>\n </msub>\n </mrow></math>, as a function of the atmospheric layer's thickness, <span></span><math>\n <mrow>\n <mi>Δ</mi>\n <mi>z</mi>\n </mrow></math>. Our solutions for layers of thickness 100 <span></span><math>\n <mrow>\n <mo>≤</mo>\n <mi>Δ</mi>\n <mi>z</mi>\n <mo>≤</mo>\n </mrow></math> 2000 m show that for baroclinic modes, <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>n</mi>\n </msub>\n </mrow></math> can be over two orders of magnitudes smaller than <span></span><math>\n <mrow>\n <mi>Δ</mi>\n <mi>z</mi>\n </mrow></math>. Analytic expressions are derived for <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>n</mi>\n </msub>\n </mrow></math> in layers of uniform temperature and numerical solutions are derived for layers in which the temperature changes linearly with height. A comparison between the two cases shows that a slight temperature gradient (of say 0.65 K across a 100 m layer) decreases <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>n</mi>\n </msub>\n </mrow></math> by a factor of 3 (but can reach a factor of 10 for larger gradients) compared with its value in a layer of uniform temperature, while a change of 10 K in the layer's uniform temperature hardly changes <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>n</mi>\n </msub>\n </mrow></math>. The <span></span><math>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow></math> baroclinic mode exists in all combinations of boundary conditions top and bottom while the barotropic mode only exists when the vertical velocity vanishes at both boundaries of the layer.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1259","citationCount":"0","resultStr":"{\"title\":\"The effect of vertical temperature gradient on the equivalent depth in thin atmospheric layers\",\"authors\":\"Yair De-Leon,&nbsp;Chaim I. Garfinkel,&nbsp;Nathan Paldor\",\"doi\":\"10.1002/asl.1259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The equivalent depth of an atmospheric layer is of importance in determining the phase speed of gravity waves and characterizing wave phenomena. The value of the equivalent depth can be obtained from the eigenvalues of the vertical structure equation (the vertical part of the primitive equations) where the mean temperature profile is a coefficient. Both numerical solutions of the vertical structure equation and analytical considerations are employed to calculate the equivalent depth, <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow></math>, as a function of the atmospheric layer's thickness, <span></span><math>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>z</mi>\\n </mrow></math>. Our solutions for layers of thickness 100 <span></span><math>\\n <mrow>\\n <mo>≤</mo>\\n <mi>Δ</mi>\\n <mi>z</mi>\\n <mo>≤</mo>\\n </mrow></math> 2000 m show that for baroclinic modes, <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow></math> can be over two orders of magnitudes smaller than <span></span><math>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>z</mi>\\n </mrow></math>. Analytic expressions are derived for <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow></math> in layers of uniform temperature and numerical solutions are derived for layers in which the temperature changes linearly with height. A comparison between the two cases shows that a slight temperature gradient (of say 0.65 K across a 100 m layer) decreases <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow></math> by a factor of 3 (but can reach a factor of 10 for larger gradients) compared with its value in a layer of uniform temperature, while a change of 10 K in the layer's uniform temperature hardly changes <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow></math>. The <span></span><math>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow></math> baroclinic mode exists in all combinations of boundary conditions top and bottom while the barotropic mode only exists when the vertical velocity vanishes at both boundaries of the layer.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1259\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1259\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1259","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气层的等效深度对于确定重力波的相位速度和描述波浪现象非常重要。等效深度值可从垂直结构方程(原始方程的垂直部分)的特征值中获得,其中平均温度剖面是一个系数。我们采用垂直结构方程的数值解法和分析方法来计算等效深度,它是大气层厚度的函数。我们对厚度为 100 2000 米的大气层的求解结果表明,对于气压模式,等效深度可能比等效深度小两个数量级以上。 对温度均匀的大气层求出了分析表达式,对温度随高度线性变化的大气层求出了数值解。这两种情况的比较表明,轻微的温度梯度(例如 100 米温度层上 0.65 K 的温度梯度)与均匀温度层中的温度梯度值相比会降低 3 倍(但梯度较大时可达到 10 倍),而均匀温度层中 10 K 的温度变化几乎不会改变......。在顶部和底部边界条件的所有组合中都存在气压折线模式,而只有当垂直速度在层的两个边界都消失时才存在气压各向同性模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The effect of vertical temperature gradient on the equivalent depth in thin atmospheric layers

The effect of vertical temperature gradient on the equivalent depth in thin atmospheric layers

The equivalent depth of an atmospheric layer is of importance in determining the phase speed of gravity waves and characterizing wave phenomena. The value of the equivalent depth can be obtained from the eigenvalues of the vertical structure equation (the vertical part of the primitive equations) where the mean temperature profile is a coefficient. Both numerical solutions of the vertical structure equation and analytical considerations are employed to calculate the equivalent depth, h n , as a function of the atmospheric layer's thickness, Δ z . Our solutions for layers of thickness 100 Δ z 2000 m show that for baroclinic modes, h n can be over two orders of magnitudes smaller than Δ z . Analytic expressions are derived for h n in layers of uniform temperature and numerical solutions are derived for layers in which the temperature changes linearly with height. A comparison between the two cases shows that a slight temperature gradient (of say 0.65 K across a 100 m layer) decreases h n by a factor of 3 (but can reach a factor of 10 for larger gradients) compared with its value in a layer of uniform temperature, while a change of 10 K in the layer's uniform temperature hardly changes h n . The n = 0 baroclinic mode exists in all combinations of boundary conditions top and bottom while the barotropic mode only exists when the vertical velocity vanishes at both boundaries of the layer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信