不同水分条件下面包小麦基因型农艺性状控制基因组区域相关分子标记的鉴定

IF 1.6 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Fatemeh Bavandpouri, Ezatollah Farshadfar, Kianoosh Cheghamirza, Mohsen Farshadfar, Mohammad Reza Bihamta, Amir Mohammad Mahdavi, Nadali Jelodar
{"title":"不同水分条件下面包小麦基因型农艺性状控制基因组区域相关分子标记的鉴定","authors":"Fatemeh Bavandpouri, Ezatollah Farshadfar, Kianoosh Cheghamirza, Mohsen Farshadfar, Mohammad Reza Bihamta, Amir Mohammad Mahdavi, Nadali Jelodar","doi":"10.1007/s11105-024-01494-x","DOIUrl":null,"url":null,"abstract":"<p>The study of the association between polymorphism at the DNA level and the diversity of phenotypic traits is an essential tool in breeding programs. To identify informative microsatellite markers related to agronomic traits, this research including 25 bread wheat genotypes was carried out. The experiment was set up in a randomized complete block design with three replications in rainfed and irrigated conditions during two cropping seasons (2018–2020) in the cold Mediterranean climate of Iran. Variance analysis showed significant differences between genotypes for most of the traits. The 16 microsatellite primers out of 20 had considerable polymorphisms, and three markers, namely XCFD168-2D, XGWM350-7D, and XGWM136-1A, were introduced as the most significant markers for subsequent studies. Cluster analysis by the UPGMA method classified 25 wheat genotypes into four groups. Genotypes 1, 3, and 25 have the most significant genetic distance with genotypes 13, 7, and Pishgam. Association analysis by stepwise regression showed that in both years under rainfed conditions, the XGWM350 marker for 1000-grain weight, the XCFD5 marker for spike length, and the XGWM165 and XGWM70 markers for spike dry weight, and under irrigated conditions, the XGWM265 marker for grain yield exhibited significant associations. Also, the XGWM136 and XCFD5 were found to be common markers associated with agronomic traits for all the test environments. In addition, most of the markers were associated with 1000-grain weight, mitt penalty length, and spike grain weight in rainfed conditions and 1000-grain weight in irrigated conditions. After identifying molecular markers related to increased yield and drought tolerance, they can be used as selection criteria to accelerate wheat breeding programs. Also, these marker-trait associations can help wheat improvement programs through marker-assisted selection.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":20215,"journal":{"name":"Plant Molecular Biology Reporter","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Molecular Markers Associated with Genomic Regions Controlling Agronomic Traits in Bread Wheat Genotypes Under Different Moisture Conditions\",\"authors\":\"Fatemeh Bavandpouri, Ezatollah Farshadfar, Kianoosh Cheghamirza, Mohsen Farshadfar, Mohammad Reza Bihamta, Amir Mohammad Mahdavi, Nadali Jelodar\",\"doi\":\"10.1007/s11105-024-01494-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of the association between polymorphism at the DNA level and the diversity of phenotypic traits is an essential tool in breeding programs. To identify informative microsatellite markers related to agronomic traits, this research including 25 bread wheat genotypes was carried out. The experiment was set up in a randomized complete block design with three replications in rainfed and irrigated conditions during two cropping seasons (2018–2020) in the cold Mediterranean climate of Iran. Variance analysis showed significant differences between genotypes for most of the traits. The 16 microsatellite primers out of 20 had considerable polymorphisms, and three markers, namely XCFD168-2D, XGWM350-7D, and XGWM136-1A, were introduced as the most significant markers for subsequent studies. Cluster analysis by the UPGMA method classified 25 wheat genotypes into four groups. Genotypes 1, 3, and 25 have the most significant genetic distance with genotypes 13, 7, and Pishgam. Association analysis by stepwise regression showed that in both years under rainfed conditions, the XGWM350 marker for 1000-grain weight, the XCFD5 marker for spike length, and the XGWM165 and XGWM70 markers for spike dry weight, and under irrigated conditions, the XGWM265 marker for grain yield exhibited significant associations. Also, the XGWM136 and XCFD5 were found to be common markers associated with agronomic traits for all the test environments. In addition, most of the markers were associated with 1000-grain weight, mitt penalty length, and spike grain weight in rainfed conditions and 1000-grain weight in irrigated conditions. After identifying molecular markers related to increased yield and drought tolerance, they can be used as selection criteria to accelerate wheat breeding programs. Also, these marker-trait associations can help wheat improvement programs through marker-assisted selection.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":20215,\"journal\":{\"name\":\"Plant Molecular Biology Reporter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology Reporter\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11105-024-01494-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology Reporter","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01494-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

研究 DNA 水平的多态性与表型性状多样性之间的关联是育种计划中的一项重要工具。为了鉴定与农艺性状相关的信息微卫星标记,本研究包括了 25 个面包小麦基因型。实验采用随机完全区组设计,在伊朗寒冷地中海气候的两个种植季节(2018-2020 年),在雨水灌溉和灌溉条件下进行三次重复。变异分析表明,基因型之间在大多数性状上存在显著差异。20 个微卫星引物中的 16 个引物具有相当大的多态性,其中 XCFD168-2D、XGWM350-7D 和 XGWM136-1A 三个标记被作为最重要的标记引入后续研究。利用 UPGMA 方法进行聚类分析,将 25 个小麦基因型分为四组。基因型 1、3 和 25 与基因型 13、7 和 Pishgam 的遗传距离最大。逐步回归法的关联分析表明,在这两年的雨水灌溉条件下,千粒重的 XGWM350 标记、穗长的 XCFD5 标记、穗干重的 XGWM165 和 XGWM70 标记,以及在灌溉条件下,谷物产量的 XGWM265 标记都表现出显著的关联。在所有测试环境中,XGWM136 和 XCFD5 也是与农艺性状相关的常见标记。此外,大多数标记与雨水灌溉条件下的千粒重、穗刑长度和穗粒重以及灌溉条件下的千粒重有关。在确定了与增产和耐旱性相关的分子标记后,可将其作为加速小麦育种计划的选择标准。此外,这些标记与性状的关联还可以通过标记辅助选择帮助小麦改良计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification of Molecular Markers Associated with Genomic Regions Controlling Agronomic Traits in Bread Wheat Genotypes Under Different Moisture Conditions

Identification of Molecular Markers Associated with Genomic Regions Controlling Agronomic Traits in Bread Wheat Genotypes Under Different Moisture Conditions

The study of the association between polymorphism at the DNA level and the diversity of phenotypic traits is an essential tool in breeding programs. To identify informative microsatellite markers related to agronomic traits, this research including 25 bread wheat genotypes was carried out. The experiment was set up in a randomized complete block design with three replications in rainfed and irrigated conditions during two cropping seasons (2018–2020) in the cold Mediterranean climate of Iran. Variance analysis showed significant differences between genotypes for most of the traits. The 16 microsatellite primers out of 20 had considerable polymorphisms, and three markers, namely XCFD168-2D, XGWM350-7D, and XGWM136-1A, were introduced as the most significant markers for subsequent studies. Cluster analysis by the UPGMA method classified 25 wheat genotypes into four groups. Genotypes 1, 3, and 25 have the most significant genetic distance with genotypes 13, 7, and Pishgam. Association analysis by stepwise regression showed that in both years under rainfed conditions, the XGWM350 marker for 1000-grain weight, the XCFD5 marker for spike length, and the XGWM165 and XGWM70 markers for spike dry weight, and under irrigated conditions, the XGWM265 marker for grain yield exhibited significant associations. Also, the XGWM136 and XCFD5 were found to be common markers associated with agronomic traits for all the test environments. In addition, most of the markers were associated with 1000-grain weight, mitt penalty length, and spike grain weight in rainfed conditions and 1000-grain weight in irrigated conditions. After identifying molecular markers related to increased yield and drought tolerance, they can be used as selection criteria to accelerate wheat breeding programs. Also, these marker-trait associations can help wheat improvement programs through marker-assisted selection.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Molecular Biology Reporter
Plant Molecular Biology Reporter 生物-生化研究方法
CiteScore
4.20
自引率
0.00%
发文量
40
审稿时长
2.7 months
期刊介绍: The scope of the journal of Plant Molecular Biology Reporter has expanded to keep pace with new developments in molecular biology and the broad area of genomics. The journal now solicits papers covering myriad breakthrough technologies and discoveries in molecular biology, genomics, proteomics, metabolomics, and other ‘omics’, as well as bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信