N. N. Orlova, A. A. Avakyants, A. V. Timonina, N. N. Kolesnikov, E. V. Deviatov
{"title":"锰碲超磁体候选材料从相对论净磁化到非相对论净磁化的跨越","authors":"N. N. Orlova, A. A. Avakyants, A. V. Timonina, N. N. Kolesnikov, E. V. Deviatov","doi":"10.1134/S0021364024602926","DOIUrl":null,"url":null,"abstract":"<p>We experimentally study magnetization reversal curves for MnTe single crystals, which is the altermagnetic candidate. Above 85 K temperature, we confirm the antiferromagnetic behavior of magnetization <i>M</i>, which is known for α-MnTe. Below 85 K, we observe anomalous low-field magnetization behavior, which is accompanied by the sophisticated <span>\\(M(\\alpha )\\)</span> angle dependence with beating pattern as the interplay between <span>\\(M(\\alpha )\\)</span> maxima and minima: in low fields, <span>\\(M(\\alpha )\\)</span> shows ferromagnetic-like 180° periodicity, while at high magnetic fields, the periodicity is changed to the 90° one. This angle dependence is the most striking result of our experiment, while it can not be expected for standard magnetic systems. In contrast, in altermagnets, symmetry allows ferromagnetic behavior only due to the spin–orbit coupling. Thus, we claim that our experiment shows the effect of weak spin–orbit coupling in MnTe, with crossover from relativistic to non-relativistic net magnetization, and, therefore, we experimentally confirm altermagnetism in MnTe.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"120 5","pages":"360 - 366"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0021364024602926.pdf","citationCount":"0","resultStr":"{\"title\":\"Crossover from Relativistic to Non-Relativistic Net Magnetization for MnTe Altermagnet Candidate\",\"authors\":\"N. N. Orlova, A. A. Avakyants, A. V. Timonina, N. N. Kolesnikov, E. V. Deviatov\",\"doi\":\"10.1134/S0021364024602926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We experimentally study magnetization reversal curves for MnTe single crystals, which is the altermagnetic candidate. Above 85 K temperature, we confirm the antiferromagnetic behavior of magnetization <i>M</i>, which is known for α-MnTe. Below 85 K, we observe anomalous low-field magnetization behavior, which is accompanied by the sophisticated <span>\\\\(M(\\\\alpha )\\\\)</span> angle dependence with beating pattern as the interplay between <span>\\\\(M(\\\\alpha )\\\\)</span> maxima and minima: in low fields, <span>\\\\(M(\\\\alpha )\\\\)</span> shows ferromagnetic-like 180° periodicity, while at high magnetic fields, the periodicity is changed to the 90° one. This angle dependence is the most striking result of our experiment, while it can not be expected for standard magnetic systems. In contrast, in altermagnets, symmetry allows ferromagnetic behavior only due to the spin–orbit coupling. Thus, we claim that our experiment shows the effect of weak spin–orbit coupling in MnTe, with crossover from relativistic to non-relativistic net magnetization, and, therefore, we experimentally confirm altermagnetism in MnTe.</p>\",\"PeriodicalId\":604,\"journal\":{\"name\":\"JETP Letters\",\"volume\":\"120 5\",\"pages\":\"360 - 366\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S0021364024602926.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JETP Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021364024602926\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364024602926","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们通过实验研究了 MnTe 单晶的磁化反转曲线,它是一种反磁性候选晶体。在 85 K 以上的温度下,我们证实了磁化 M 的反铁磁性行为,这对于 α-MnTe 来说是已知的。在温度低于 85 K 时,我们观察到异常的低磁场磁化行为,这种行为伴随着复杂的 M(α) 角度依赖性,其跳动模式是 M(α) 最大值和最小值之间的相互作用:在低磁场中,M(α) 显示出类似铁磁性的 180° 周期性,而在高磁场中,周期性变为 90°。这种角度依赖性是我们实验中最引人注目的结果,而这是标准磁性系统所无法预料的。相反,在变磁体中,对称性只允许自旋轨道耦合产生铁磁行为。因此,我们认为我们的实验显示了锰碲中弱自旋轨道耦合的影响,以及从相对论净磁化到非相对论净磁化的交叉,因此,我们通过实验证实了锰碲中的变磁性。
Crossover from Relativistic to Non-Relativistic Net Magnetization for MnTe Altermagnet Candidate
We experimentally study magnetization reversal curves for MnTe single crystals, which is the altermagnetic candidate. Above 85 K temperature, we confirm the antiferromagnetic behavior of magnetization M, which is known for α-MnTe. Below 85 K, we observe anomalous low-field magnetization behavior, which is accompanied by the sophisticated \(M(\alpha )\) angle dependence with beating pattern as the interplay between \(M(\alpha )\) maxima and minima: in low fields, \(M(\alpha )\) shows ferromagnetic-like 180° periodicity, while at high magnetic fields, the periodicity is changed to the 90° one. This angle dependence is the most striking result of our experiment, while it can not be expected for standard magnetic systems. In contrast, in altermagnets, symmetry allows ferromagnetic behavior only due to the spin–orbit coupling. Thus, we claim that our experiment shows the effect of weak spin–orbit coupling in MnTe, with crossover from relativistic to non-relativistic net magnetization, and, therefore, we experimentally confirm altermagnetism in MnTe.
期刊介绍:
All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.