通过无油界面剪切实现无系磁性微机器人的藻酸盐/凝胶MA 微颗粒

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Shiyu Wu, Yang Zhou, Juan Wei, Zicheng Da, Wenquan Chen, Xiaoxia Shu, Tingting Luo, Yuping Duan, Runhuai Yang, Chengbiao Ding and Guangli Liu
{"title":"通过无油界面剪切实现无系磁性微机器人的藻酸盐/凝胶MA 微颗粒","authors":"Shiyu Wu, Yang Zhou, Juan Wei, Zicheng Da, Wenquan Chen, Xiaoxia Shu, Tingting Luo, Yuping Duan, Runhuai Yang, Chengbiao Ding and Guangli Liu","doi":"10.1039/D4BM00875H","DOIUrl":null,"url":null,"abstract":"<p >Microrobots hold broad application prospects in the field of precision medicine, such as intravenous drug injection, tumor resection, opening blood vessels and imaging during abdominal surgery. However, the rapid and controllable preparation of biocompatible hydrogel microparticles still poses challenges. This study proposes the one-step direct acquisition of biocompatible sodium alginate and gelatin methacrylate (GelMA) hydrogel microparticles using an oil-free aqueous solution, ensuring production with a controllable generation frequency. An adaptive interface shearing platform is established to fabricate alginate/GelMA microparticles using a mixture of the hydrogel, photoinitiator, and Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles (NPs). By adjusting the static magnetic field intensity (<em>B</em><small><sub>s</sub></small>), vibration frequency, and flow rate (<em>Q</em>) of the dispersed phase, the size and morphology of the hydrogel microparticles can be controlled. These hydrogel microparticle robots exhibit magnetic responsiveness, demonstrating precise rotating and rolling movements under the influence of an externally rotating magnetic field (RMF). Moreover, hydrogel microparticle robots with a specific critical frequency (<em>C</em><small><sub>f</sub></small>) can be customized by adjusting the <em>B</em><small><sub>s</sub></small> and the concentration of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> NPs. The directional <em>in situ</em> untethered motion of the hydrogel microparticle robots can be successfully realized and accurately controlled in the climbing over obstacles and <em>in vitro</em> experiments of animals, respectively. This versatile and fully biodegradable microrobot has the potential to precisely control movement to bone tissue and the natural cavity of the human body, as well as drug delivery.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 21","pages":" 5562-5572"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alginate/GelMA microparticles via oil-free interface shearing for untethered magnetic microbots†\",\"authors\":\"Shiyu Wu, Yang Zhou, Juan Wei, Zicheng Da, Wenquan Chen, Xiaoxia Shu, Tingting Luo, Yuping Duan, Runhuai Yang, Chengbiao Ding and Guangli Liu\",\"doi\":\"10.1039/D4BM00875H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microrobots hold broad application prospects in the field of precision medicine, such as intravenous drug injection, tumor resection, opening blood vessels and imaging during abdominal surgery. However, the rapid and controllable preparation of biocompatible hydrogel microparticles still poses challenges. This study proposes the one-step direct acquisition of biocompatible sodium alginate and gelatin methacrylate (GelMA) hydrogel microparticles using an oil-free aqueous solution, ensuring production with a controllable generation frequency. An adaptive interface shearing platform is established to fabricate alginate/GelMA microparticles using a mixture of the hydrogel, photoinitiator, and Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles (NPs). By adjusting the static magnetic field intensity (<em>B</em><small><sub>s</sub></small>), vibration frequency, and flow rate (<em>Q</em>) of the dispersed phase, the size and morphology of the hydrogel microparticles can be controlled. These hydrogel microparticle robots exhibit magnetic responsiveness, demonstrating precise rotating and rolling movements under the influence of an externally rotating magnetic field (RMF). Moreover, hydrogel microparticle robots with a specific critical frequency (<em>C</em><small><sub>f</sub></small>) can be customized by adjusting the <em>B</em><small><sub>s</sub></small> and the concentration of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> NPs. The directional <em>in situ</em> untethered motion of the hydrogel microparticle robots can be successfully realized and accurately controlled in the climbing over obstacles and <em>in vitro</em> experiments of animals, respectively. This versatile and fully biodegradable microrobot has the potential to precisely control movement to bone tissue and the natural cavity of the human body, as well as drug delivery.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 21\",\"pages\":\" 5562-5572\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00875h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00875h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

微机器人在精准医疗领域有着广阔的应用前景,如静脉注射药物、肿瘤切除、腹部手术中的血管开放和成像等。然而,快速、可控地制备生物相容性水凝胶微颗粒仍是一项挑战。本研究提出了利用无油水溶液一步直接获取生物相容性海藻酸钠和甲基丙烯酸明胶(GelMA)水凝胶微颗粒的方法,确保生产过程中生成频率可控。我们建立了一个自适应界面剪切平台,利用水凝胶、光引发剂和 Fe3O4 纳米粒子(NPs)的混合物来制造海藻酸钠/甲基丙烯酸明胶(GelMA)微颗粒。通过调节静磁场强度(Bs)、振动频率和分散相的流速(Q),可以控制水凝胶微颗粒的大小和形态。这些水凝胶微颗粒机器人具有磁响应性,在外部旋转磁场(RMF)的影响下,可进行精确的旋转和滚动运动。此外,通过调整 Bs 和 Fe3O4 NPs 的浓度,可以定制具有特定临界频率(Cf)的水凝胶微粒子机器人。在翻越障碍物和动物体外实验中,水凝胶微粒子机器人可分别成功实现和精确控制原位定向无系运动。这种多功能、可完全生物降解的微型机器人具有精确控制骨组织和人体自然腔道运动以及药物输送的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Alginate/GelMA microparticles via oil-free interface shearing for untethered magnetic microbots†

Alginate/GelMA microparticles via oil-free interface shearing for untethered magnetic microbots†

Microrobots hold broad application prospects in the field of precision medicine, such as intravenous drug injection, tumor resection, opening blood vessels and imaging during abdominal surgery. However, the rapid and controllable preparation of biocompatible hydrogel microparticles still poses challenges. This study proposes the one-step direct acquisition of biocompatible sodium alginate and gelatin methacrylate (GelMA) hydrogel microparticles using an oil-free aqueous solution, ensuring production with a controllable generation frequency. An adaptive interface shearing platform is established to fabricate alginate/GelMA microparticles using a mixture of the hydrogel, photoinitiator, and Fe3O4 nanoparticles (NPs). By adjusting the static magnetic field intensity (Bs), vibration frequency, and flow rate (Q) of the dispersed phase, the size and morphology of the hydrogel microparticles can be controlled. These hydrogel microparticle robots exhibit magnetic responsiveness, demonstrating precise rotating and rolling movements under the influence of an externally rotating magnetic field (RMF). Moreover, hydrogel microparticle robots with a specific critical frequency (Cf) can be customized by adjusting the Bs and the concentration of Fe3O4 NPs. The directional in situ untethered motion of the hydrogel microparticle robots can be successfully realized and accurately controlled in the climbing over obstacles and in vitro experiments of animals, respectively. This versatile and fully biodegradable microrobot has the potential to precisely control movement to bone tissue and the natural cavity of the human body, as well as drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信