{"title":"具有高强度和延展性的石墨烯装饰双峰纯金属","authors":"Zhongze Lin, Zhe Sun, Boyi Luo, Ganpei Tang, Xin Jiang, Zhe Shen, Biao Ding, Yunbo Zhong","doi":"10.1080/21663831.2024.2386436","DOIUrl":null,"url":null,"abstract":"Heterostructured design and microcrack management mitigate the strength-ductility dilemma in metallic materials. Here, we demonstrate a simultaneous enhancement of strength and ductility in graphen...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"71 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene-decorated bimodal pure metal with high strength and ductility\",\"authors\":\"Zhongze Lin, Zhe Sun, Boyi Luo, Ganpei Tang, Xin Jiang, Zhe Shen, Biao Ding, Yunbo Zhong\",\"doi\":\"10.1080/21663831.2024.2386436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterostructured design and microcrack management mitigate the strength-ductility dilemma in metallic materials. Here, we demonstrate a simultaneous enhancement of strength and ductility in graphen...\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2024.2386436\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2024.2386436","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Graphene-decorated bimodal pure metal with high strength and ductility
Heterostructured design and microcrack management mitigate the strength-ductility dilemma in metallic materials. Here, we demonstrate a simultaneous enhancement of strength and ductility in graphen...
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.