{"title":"小球藻(小球藻科)对沙质土壤肥力和土壤渗滤液成分的影响","authors":"Tomasz Garbowski","doi":"10.1007/s42729-024-01984-7","DOIUrl":null,"url":null,"abstract":"<p>The aim of the manuscript was to verify the hypothesis whether the algal biomass of <i>Chlorella vulgaris</i> added as a fertilizer affects the properties of a sandy soil and the leachates from that soil. A pot experiment was conducted using sandy soil, which was enriched with a suspension of live <i>Chlorella vulgaris</i> cells. The concentrations of total nitrogen (N<sub>total</sub>), ammonium nitrogen, nitrate nitrogen, total phosphorus (P<sub>total</sub>), phosphate phosphorus, potassium, sulphates, turbidity, pH and electrolytic conductivity (EC) were determined in the leachates from soil. Soil samples from each pot were analysed for N<sub>total</sub>, P<sub>total</sub>, P<sub>available</sub>, K<sub>available</sub>, calcium (Ca), organic carbon (C<sub>org</sub>.) and pH. Soil fertilized with suspended biomass of <i>Chlorella vulgaris</i> was enriched with nutrients, mainly nitrogen, phosphorus and calcium. The use of algae has also helped reduce nutrient losses in the soil. There was an increase in the concentration of SO<sub>4</sub><sup>2−</sup> ions in the tested leachates, which could pose a potential threat to the environment. Conducted studies confirm the hypothesis that <i>Chlorella vulgaris</i> added to sandy soil as a suspension of living cells affects the fertilizing properties of the soil and the composition of leachates from the fertilized soil. Soil fertilized with <i>Chlorella vulgaris</i> biomass is more resistant to nutrient leaching. An important conclusion of the study is that the composition of soil leachates needs to be monitored when testing and applying this type of fertilizer, due to the risk of sulphates entering into the groundwater.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Chlorella vulgaris (Chlorellales: Chlorellaceae) on the Fertility of Sandy Soils and on the Composition of Soil Leachates\",\"authors\":\"Tomasz Garbowski\",\"doi\":\"10.1007/s42729-024-01984-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of the manuscript was to verify the hypothesis whether the algal biomass of <i>Chlorella vulgaris</i> added as a fertilizer affects the properties of a sandy soil and the leachates from that soil. A pot experiment was conducted using sandy soil, which was enriched with a suspension of live <i>Chlorella vulgaris</i> cells. The concentrations of total nitrogen (N<sub>total</sub>), ammonium nitrogen, nitrate nitrogen, total phosphorus (P<sub>total</sub>), phosphate phosphorus, potassium, sulphates, turbidity, pH and electrolytic conductivity (EC) were determined in the leachates from soil. Soil samples from each pot were analysed for N<sub>total</sub>, P<sub>total</sub>, P<sub>available</sub>, K<sub>available</sub>, calcium (Ca), organic carbon (C<sub>org</sub>.) and pH. Soil fertilized with suspended biomass of <i>Chlorella vulgaris</i> was enriched with nutrients, mainly nitrogen, phosphorus and calcium. The use of algae has also helped reduce nutrient losses in the soil. There was an increase in the concentration of SO<sub>4</sub><sup>2−</sup> ions in the tested leachates, which could pose a potential threat to the environment. Conducted studies confirm the hypothesis that <i>Chlorella vulgaris</i> added to sandy soil as a suspension of living cells affects the fertilizing properties of the soil and the composition of leachates from the fertilized soil. Soil fertilized with <i>Chlorella vulgaris</i> biomass is more resistant to nutrient leaching. An important conclusion of the study is that the composition of soil leachates needs to be monitored when testing and applying this type of fertilizer, due to the risk of sulphates entering into the groundwater.</p>\",\"PeriodicalId\":17042,\"journal\":{\"name\":\"Journal of Soil Science and Plant Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42729-024-01984-7\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01984-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Effect of Chlorella vulgaris (Chlorellales: Chlorellaceae) on the Fertility of Sandy Soils and on the Composition of Soil Leachates
The aim of the manuscript was to verify the hypothesis whether the algal biomass of Chlorella vulgaris added as a fertilizer affects the properties of a sandy soil and the leachates from that soil. A pot experiment was conducted using sandy soil, which was enriched with a suspension of live Chlorella vulgaris cells. The concentrations of total nitrogen (Ntotal), ammonium nitrogen, nitrate nitrogen, total phosphorus (Ptotal), phosphate phosphorus, potassium, sulphates, turbidity, pH and electrolytic conductivity (EC) were determined in the leachates from soil. Soil samples from each pot were analysed for Ntotal, Ptotal, Pavailable, Kavailable, calcium (Ca), organic carbon (Corg.) and pH. Soil fertilized with suspended biomass of Chlorella vulgaris was enriched with nutrients, mainly nitrogen, phosphorus and calcium. The use of algae has also helped reduce nutrient losses in the soil. There was an increase in the concentration of SO42− ions in the tested leachates, which could pose a potential threat to the environment. Conducted studies confirm the hypothesis that Chlorella vulgaris added to sandy soil as a suspension of living cells affects the fertilizing properties of the soil and the composition of leachates from the fertilized soil. Soil fertilized with Chlorella vulgaris biomass is more resistant to nutrient leaching. An important conclusion of the study is that the composition of soil leachates needs to be monitored when testing and applying this type of fertilizer, due to the risk of sulphates entering into the groundwater.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.