实现商业可行性的功能化过程:利用 IL-6 生物标记物检测口腔白斑病

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hsiao-Hsuan Wan, Haochen Zhu, Chao-Ching Chiang, Xinyi Xia, Jian-Sian Li, Fan Ren, Cheng-Tse Tsai, Yu-Te Liao, Tai-Cheng Chou, Dan Neal, Joseph Katz, Josephine F. Esquivel-Upshaw
{"title":"实现商业可行性的功能化过程:利用 IL-6 生物标记物检测口腔白斑病","authors":"Hsiao-Hsuan Wan, Haochen Zhu, Chao-Ching Chiang, Xinyi Xia, Jian-Sian Li, Fan Ren, Cheng-Tse Tsai, Yu-Te Liao, Tai-Cheng Chou, Dan Neal, Joseph Katz, Josephine F. Esquivel-Upshaw","doi":"10.1149/2162-8777/ad6eb6","DOIUrl":null,"url":null,"abstract":"Oral leukoplakia (OL) or white patched in the oral cavity poses a diagnostic challenge in oral health due to its white patches on the oral mucosa, affecting 1%-2% of the population, predominantly those over 40 years old. Despite being often benign, OL often precedes potentially malignant disorders and oral cancer, necessitating early detection and intervention. The search for novel biomarkers has intensified, with interleukin-6 (IL-6) emerging as a promising candidate. IL-6 detection levels in saliva offer a non-invasive approach, aiding an accurate risk assessment and treatment planning. Here, we introduce an IL-6-based biosensor for rapid concentration detection. A novel, hour-long functionalization method streamlines mass production, maintaining a low detection limit down to 10<sup>−15</sup> g ml<sup>−1</sup>, which is three order lower than current commercial ELISA kits, with a sensitivity around 18/dec. Utilizing a specially designed printed circuit board with double pulse technology ensures precise concentration results, with human sample tests confirming the biosensor’s efficacy in real-world applications. This innovation represents a significant advancement in early OL detection, enabling timely intervention to prevent its progression to more severe forms of oral cancer.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"23 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalization Process for Commercial Viability: Oral Leukoplakia Detection Using IL-6 Biomarker\",\"authors\":\"Hsiao-Hsuan Wan, Haochen Zhu, Chao-Ching Chiang, Xinyi Xia, Jian-Sian Li, Fan Ren, Cheng-Tse Tsai, Yu-Te Liao, Tai-Cheng Chou, Dan Neal, Joseph Katz, Josephine F. Esquivel-Upshaw\",\"doi\":\"10.1149/2162-8777/ad6eb6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oral leukoplakia (OL) or white patched in the oral cavity poses a diagnostic challenge in oral health due to its white patches on the oral mucosa, affecting 1%-2% of the population, predominantly those over 40 years old. Despite being often benign, OL often precedes potentially malignant disorders and oral cancer, necessitating early detection and intervention. The search for novel biomarkers has intensified, with interleukin-6 (IL-6) emerging as a promising candidate. IL-6 detection levels in saliva offer a non-invasive approach, aiding an accurate risk assessment and treatment planning. Here, we introduce an IL-6-based biosensor for rapid concentration detection. A novel, hour-long functionalization method streamlines mass production, maintaining a low detection limit down to 10<sup>−15</sup> g ml<sup>−1</sup>, which is three order lower than current commercial ELISA kits, with a sensitivity around 18/dec. Utilizing a specially designed printed circuit board with double pulse technology ensures precise concentration results, with human sample tests confirming the biosensor’s efficacy in real-world applications. This innovation represents a significant advancement in early OL detection, enabling timely intervention to prevent its progression to more severe forms of oral cancer.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad6eb6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad6eb6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

口腔白斑病(OL)或口腔白斑是口腔健康诊断中的一项挑战,因为口腔黏膜上的白斑会影响 1%-2%的人群,主要是 40 岁以上的人群。尽管 OL 通常是良性的,但它往往先于潜在的恶性疾病和口腔癌,因此需要及早发现和干预。对新型生物标志物的研究不断深入,其中白细胞介素-6(IL-6)是一个很有希望的候选标志物。唾液中的 IL-6 检测水平提供了一种非侵入性方法,有助于准确的风险评估和治疗规划。在此,我们介绍一种基于 IL-6 的生物传感器,用于快速浓度检测。新颖的、长达一小时的功能化方法简化了批量生产,使检测限低至 10-15 g ml-1,比目前的商用酶联免疫吸附试剂盒低三个数量级,灵敏度约为 18/dec。利用专门设计的印刷电路板和双脉冲技术确保了精确的浓度结果,人体样本测试证实了生物传感器在实际应用中的功效。这一创新代表了早期 OL 检测领域的重大进步,能够及时干预,防止其发展为更严重的口腔癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functionalization Process for Commercial Viability: Oral Leukoplakia Detection Using IL-6 Biomarker
Oral leukoplakia (OL) or white patched in the oral cavity poses a diagnostic challenge in oral health due to its white patches on the oral mucosa, affecting 1%-2% of the population, predominantly those over 40 years old. Despite being often benign, OL often precedes potentially malignant disorders and oral cancer, necessitating early detection and intervention. The search for novel biomarkers has intensified, with interleukin-6 (IL-6) emerging as a promising candidate. IL-6 detection levels in saliva offer a non-invasive approach, aiding an accurate risk assessment and treatment planning. Here, we introduce an IL-6-based biosensor for rapid concentration detection. A novel, hour-long functionalization method streamlines mass production, maintaining a low detection limit down to 10−15 g ml−1, which is three order lower than current commercial ELISA kits, with a sensitivity around 18/dec. Utilizing a specially designed printed circuit board with double pulse technology ensures precise concentration results, with human sample tests confirming the biosensor’s efficacy in real-world applications. This innovation represents a significant advancement in early OL detection, enabling timely intervention to prevent its progression to more severe forms of oral cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信