{"title":"利用多变量控制图实时监控协作装配系统中的人员和工艺性能参数","authors":"Elisa Verna, Stefano Puttero, Gianfranco Genta, Maurizio Galetto","doi":"10.1007/s10846-024-02162-8","DOIUrl":null,"url":null,"abstract":"<p>With the rise in customized product demands, the production of small batches with a wide variety of products is becoming more common. A high degree of flexibility is required from operators to manage changes in volumes and products, which has led to the use of Human-Robot Collaboration (HRC) systems for custom manufacturing. However, this variety introduces complexity that affects production time, cost, and quality. To address this issue, multivariate control charts are used as diagnostic tools to evaluate the stability of several parameters related to both product/process and human well-being in HRC systems. These key parameters monitored include assembly time, quality control time, total defects, and operator stress, providing a more holistic view of system performance. Real-time monitoring of process performance along with human-related factors, which is rarely considered in statistical process control, provides comprehensive stability control over all customized product variants produced in the HRC system. The proposed approach includes defining the parameters to be monitored, constructing control charts, collecting data after product variant assembly, and verifying that the set of parameters is under control via control charts. This increases the system's responsiveness to both process inefficiencies and human well-being. The procedure can be automated by embedding control chart routines in the software of the HRC system or its digital twin, without adding additional tasks to the operator's workload. Its practicality and effectiveness are evidenced in custom electronic board assembly, highlighting its role in optimizing HRC system performance.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"11 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Monitoring of Human and Process Performance Parameters in Collaborative Assembly Systems using Multivariate Control Charts\",\"authors\":\"Elisa Verna, Stefano Puttero, Gianfranco Genta, Maurizio Galetto\",\"doi\":\"10.1007/s10846-024-02162-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rise in customized product demands, the production of small batches with a wide variety of products is becoming more common. A high degree of flexibility is required from operators to manage changes in volumes and products, which has led to the use of Human-Robot Collaboration (HRC) systems for custom manufacturing. However, this variety introduces complexity that affects production time, cost, and quality. To address this issue, multivariate control charts are used as diagnostic tools to evaluate the stability of several parameters related to both product/process and human well-being in HRC systems. These key parameters monitored include assembly time, quality control time, total defects, and operator stress, providing a more holistic view of system performance. Real-time monitoring of process performance along with human-related factors, which is rarely considered in statistical process control, provides comprehensive stability control over all customized product variants produced in the HRC system. The proposed approach includes defining the parameters to be monitored, constructing control charts, collecting data after product variant assembly, and verifying that the set of parameters is under control via control charts. This increases the system's responsiveness to both process inefficiencies and human well-being. The procedure can be automated by embedding control chart routines in the software of the HRC system or its digital twin, without adding additional tasks to the operator's workload. Its practicality and effectiveness are evidenced in custom electronic board assembly, highlighting its role in optimizing HRC system performance.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02162-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02162-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Real-Time Monitoring of Human and Process Performance Parameters in Collaborative Assembly Systems using Multivariate Control Charts
With the rise in customized product demands, the production of small batches with a wide variety of products is becoming more common. A high degree of flexibility is required from operators to manage changes in volumes and products, which has led to the use of Human-Robot Collaboration (HRC) systems for custom manufacturing. However, this variety introduces complexity that affects production time, cost, and quality. To address this issue, multivariate control charts are used as diagnostic tools to evaluate the stability of several parameters related to both product/process and human well-being in HRC systems. These key parameters monitored include assembly time, quality control time, total defects, and operator stress, providing a more holistic view of system performance. Real-time monitoring of process performance along with human-related factors, which is rarely considered in statistical process control, provides comprehensive stability control over all customized product variants produced in the HRC system. The proposed approach includes defining the parameters to be monitored, constructing control charts, collecting data after product variant assembly, and verifying that the set of parameters is under control via control charts. This increases the system's responsiveness to both process inefficiencies and human well-being. The procedure can be automated by embedding control chart routines in the software of the HRC system or its digital twin, without adding additional tasks to the operator's workload. Its practicality and effectiveness are evidenced in custom electronic board assembly, highlighting its role in optimizing HRC system performance.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).