使用 Koopman 运算器对多旋翼系统进行数据驱动的故障检测和隔离

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jayden Dongwoo Lee, Sukjae Im, Lamsu Kim, Hyungjoo Ahn, Hyochoong Bang
{"title":"使用 Koopman 运算器对多旋翼系统进行数据驱动的故障检测和隔离","authors":"Jayden Dongwoo Lee, Sukjae Im, Lamsu Kim, Hyungjoo Ahn, Hyochoong Bang","doi":"10.1007/s10846-024-02142-y","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a data-driven fault detection and isolation (FDI) for a multirotor system using Koopman operator and Luenberger observer. Koopman operator is an infinite-dimensional linear operator that can transform nonlinear dynamical systems into linear ones. Using this transformation, our aim is to apply the linear fault detection method to the nonlinear system. Initially, a Koopman operator-based linear model is derived to represent the multirotor system, considering factors like non-diagonal inertial tensor, center of gravity variations, aerodynamic effects, and actuator dynamics. Various candidate lifting functions are evaluated for prediction performance and compared using the root mean square error to identify the most suitable one. Subsequently, a Koopman operator-based Luenberger observer is proposed using the lifted linear model to generate residuals for identifying faulty actuators. Simulation and experimental results demonstrate the effectiveness of the proposed observer in detecting actuator faults such as bias and loss of effectiveness, without the need for an explicitly defined fault dataset.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"30 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator\",\"authors\":\"Jayden Dongwoo Lee, Sukjae Im, Lamsu Kim, Hyungjoo Ahn, Hyochoong Bang\",\"doi\":\"10.1007/s10846-024-02142-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a data-driven fault detection and isolation (FDI) for a multirotor system using Koopman operator and Luenberger observer. Koopman operator is an infinite-dimensional linear operator that can transform nonlinear dynamical systems into linear ones. Using this transformation, our aim is to apply the linear fault detection method to the nonlinear system. Initially, a Koopman operator-based linear model is derived to represent the multirotor system, considering factors like non-diagonal inertial tensor, center of gravity variations, aerodynamic effects, and actuator dynamics. Various candidate lifting functions are evaluated for prediction performance and compared using the root mean square error to identify the most suitable one. Subsequently, a Koopman operator-based Luenberger observer is proposed using the lifted linear model to generate residuals for identifying faulty actuators. Simulation and experimental results demonstrate the effectiveness of the proposed observer in detecting actuator faults such as bias and loss of effectiveness, without the need for an explicitly defined fault dataset.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02142-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02142-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文利用库普曼(Koopman)算子和卢恩贝格尔(Luenberger)观测器,为多旋翼系统提出了一种数据驱动的故障检测和隔离(FDI)方法。Koopman 算子是一种无穷维线性算子,可将非线性动力系统转换为线性系统。利用这种转换,我们的目标是将线性故障检测方法应用于非线性系统。首先,考虑到非对角惯性张量、重心变化、空气动力效应和致动器动力学等因素,我们导出了一个基于库普曼算子的线性模型来表示多旋翼系统。对各种候选升力函数的预测性能进行了评估,并使用均方根误差进行比较,以确定最合适的升力函数。随后,提出了一种基于 Koopman 算子的卢恩伯格观测器,利用提升线性模型生成残差,以识别故障致动器。仿真和实验结果表明,所提出的观测器在检测致动器故障(如偏差和失效)方面非常有效,无需明确定义的故障数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator

This paper presents a data-driven fault detection and isolation (FDI) for a multirotor system using Koopman operator and Luenberger observer. Koopman operator is an infinite-dimensional linear operator that can transform nonlinear dynamical systems into linear ones. Using this transformation, our aim is to apply the linear fault detection method to the nonlinear system. Initially, a Koopman operator-based linear model is derived to represent the multirotor system, considering factors like non-diagonal inertial tensor, center of gravity variations, aerodynamic effects, and actuator dynamics. Various candidate lifting functions are evaluated for prediction performance and compared using the root mean square error to identify the most suitable one. Subsequently, a Koopman operator-based Luenberger observer is proposed using the lifted linear model to generate residuals for identifying faulty actuators. Simulation and experimental results demonstrate the effectiveness of the proposed observer in detecting actuator faults such as bias and loss of effectiveness, without the need for an explicitly defined fault dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信