Tingting Lin, Qiang Gao, Jun Zhong, Suye Yu, Guodong Liu
{"title":"CuCoZrZ (Z = Sn, Pb) 四元 Heusler 化合物的结构、机械和热电特性:第一原理研究","authors":"Tingting Lin, Qiang Gao, Jun Zhong, Suye Yu, Guodong Liu","doi":"10.1002/pssb.202400278","DOIUrl":null,"url":null,"abstract":"The structural, mechanical, and thermoelectric properties of quaternary CuCoZrZ (Z = Sn, Pb) Heusler compounds are theoretically investigated. Both compounds are mechanically and dynamically stable. The indirect semiconductor bandgaps of 0.220 eV for CuCoZrSn and 0.197 eV for CuCoZrPb are observed using the Tran and Blaha‐modified Becke–Johnson technique. The lattice thermal conductivities, calculated by the Slack approach, are 4.69 and 6.90 W mK<jats:sup>−1</jats:sup> for CuCoZrSn and CuCoZrPb at 300 K, respectively. The relationship between thermoelectric properties and carrier concentration is studied using the BoltzTrap code. Both n‐ and p‐type CuCoZrZ (Z = Sn, Pb) compounds exhibit high ZT values, making them promising thermoelectric materials.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, Mechanical, and Thermoelectric Properties of Quaternary Heusler Compounds CuCoZrZ (Z = Sn, Pb): A First‐Principles Investigation\",\"authors\":\"Tingting Lin, Qiang Gao, Jun Zhong, Suye Yu, Guodong Liu\",\"doi\":\"10.1002/pssb.202400278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural, mechanical, and thermoelectric properties of quaternary CuCoZrZ (Z = Sn, Pb) Heusler compounds are theoretically investigated. Both compounds are mechanically and dynamically stable. The indirect semiconductor bandgaps of 0.220 eV for CuCoZrSn and 0.197 eV for CuCoZrPb are observed using the Tran and Blaha‐modified Becke–Johnson technique. The lattice thermal conductivities, calculated by the Slack approach, are 4.69 and 6.90 W mK<jats:sup>−1</jats:sup> for CuCoZrSn and CuCoZrPb at 300 K, respectively. The relationship between thermoelectric properties and carrier concentration is studied using the BoltzTrap code. Both n‐ and p‐type CuCoZrZ (Z = Sn, Pb) compounds exhibit high ZT values, making them promising thermoelectric materials.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400278\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400278","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
从理论上研究了四元 CuCoZrZ(Z = 锡、铅)Heusler 化合物的结构、机械和热电特性。这两种化合物都具有机械和动态稳定性。利用 Tran 和 Blaha 修改的贝克-约翰逊技术,观察到 CuCoZrSn 和 CuCoZrPb 的间接半导体带隙分别为 0.220 eV 和 0.197 eV。通过斯拉克方法计算得出,300 K 时 CuCoZrSn 和 CuCoZrPb 的晶格热导率分别为 4.69 和 6.90 W mK-1。利用 BoltzTrap 代码研究了热电性能与载流子浓度之间的关系。n 型和 p 型 CuCoZrZ(Z = Sn、Pb)化合物都表现出很高的 ZT 值,使它们成为很有前途的热电材料。
Structural, Mechanical, and Thermoelectric Properties of Quaternary Heusler Compounds CuCoZrZ (Z = Sn, Pb): A First‐Principles Investigation
The structural, mechanical, and thermoelectric properties of quaternary CuCoZrZ (Z = Sn, Pb) Heusler compounds are theoretically investigated. Both compounds are mechanically and dynamically stable. The indirect semiconductor bandgaps of 0.220 eV for CuCoZrSn and 0.197 eV for CuCoZrPb are observed using the Tran and Blaha‐modified Becke–Johnson technique. The lattice thermal conductivities, calculated by the Slack approach, are 4.69 and 6.90 W mK−1 for CuCoZrSn and CuCoZrPb at 300 K, respectively. The relationship between thermoelectric properties and carrier concentration is studied using the BoltzTrap code. Both n‐ and p‐type CuCoZrZ (Z = Sn, Pb) compounds exhibit high ZT values, making them promising thermoelectric materials.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.