用于横向准相位匹配波长转换器件的 +c/-c GaN 极性反转双层层的金属有机气相外延

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Kazuhisa Ikeda, Shahzeb Malik, Masahiro Uemukai, Tomoyuki Tanikawa, Ryuji Katayama
{"title":"用于横向准相位匹配波长转换器件的 +c/-c GaN 极性反转双层层的金属有机气相外延","authors":"Kazuhisa Ikeda, Shahzeb Malik, Masahiro Uemukai, Tomoyuki Tanikawa, Ryuji Katayama","doi":"10.1002/pssb.202400161","DOIUrl":null,"url":null,"abstract":"Photon‐pair generation based on optical parametric down‐conversion has attracted for the application as a light source for quantum information. Highly efficient wavelength‐conversion devices require a polarity‐inversion structure when using nitride semiconductors. A transverse quasi‐phase‐matching (QPM) polarity‐inverted GaN bilayer channel waveguide device is suitable for efficient wavelength conversion. This study designed a cross‐section device to satisfy the modal dispersion phase‐matching condition between the TM<jats:sub>02</jats:sub> mode pump light and the TM<jats:sub>00</jats:sub> mode signal/idler light. Moreover, an AlN oxidation interlayer fabricates the Ga‐polar/N‐polar (+<jats:italic>c</jats:italic>/−<jats:italic>c</jats:italic>) GaN layers via metalorganic vapor‐phase epitaxy (MOVPE). A 145 nm thick film layer with a macro‐step‐free surface is grown by optimizing the −<jats:italic>c</jats:italic>‐GaN growth conditions and reducing the substrate off‐angle to 0.2°. Next, the AlN layer is oxidized in an electric furnace and MOVPE is used to regrow a 1500 nm thick +<jats:italic>c</jats:italic>‐GaN layer. A macrosteps‐free surface can be achieved by reducing the off‐angle to 0.2° and optimizing the −<jats:italic>c</jats:italic>‐GaN growth conditions to avoid hillock formation. These results pave the way for improving the efficiency of GaN transverse QPM wavelength‐conversion devices.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metalorganic Vapor‐Phase Epitaxy of +c/−c GaN Polarity Inverted Bilayer for Transverse Quasi‐Phase‐Matched Wavelength Conversion Device\",\"authors\":\"Kazuhisa Ikeda, Shahzeb Malik, Masahiro Uemukai, Tomoyuki Tanikawa, Ryuji Katayama\",\"doi\":\"10.1002/pssb.202400161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photon‐pair generation based on optical parametric down‐conversion has attracted for the application as a light source for quantum information. Highly efficient wavelength‐conversion devices require a polarity‐inversion structure when using nitride semiconductors. A transverse quasi‐phase‐matching (QPM) polarity‐inverted GaN bilayer channel waveguide device is suitable for efficient wavelength conversion. This study designed a cross‐section device to satisfy the modal dispersion phase‐matching condition between the TM<jats:sub>02</jats:sub> mode pump light and the TM<jats:sub>00</jats:sub> mode signal/idler light. Moreover, an AlN oxidation interlayer fabricates the Ga‐polar/N‐polar (+<jats:italic>c</jats:italic>/−<jats:italic>c</jats:italic>) GaN layers via metalorganic vapor‐phase epitaxy (MOVPE). A 145 nm thick film layer with a macro‐step‐free surface is grown by optimizing the −<jats:italic>c</jats:italic>‐GaN growth conditions and reducing the substrate off‐angle to 0.2°. Next, the AlN layer is oxidized in an electric furnace and MOVPE is used to regrow a 1500 nm thick +<jats:italic>c</jats:italic>‐GaN layer. A macrosteps‐free surface can be achieved by reducing the off‐angle to 0.2° and optimizing the −<jats:italic>c</jats:italic>‐GaN growth conditions to avoid hillock formation. These results pave the way for improving the efficiency of GaN transverse QPM wavelength‐conversion devices.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400161\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400161","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

基于光参量下变频技术的光子对生成技术被广泛应用于量子信息光源。使用氮化物半导体时,高效波长转换器件需要极性反转结构。横向准相位匹配(QPM)极性反转氮化镓双层沟道波导器件适用于高效波长转换。本研究设计了一种横截面器件,以满足 TM02 模式泵浦光和 TM00 模式信号/idler 光之间的模态色散相位匹配条件。此外,AlN 氧化中间层通过金属有机气相外延(MOVPE)制造了 Ga 极/N 极(+c/-c)GaN 层。通过优化 -c-GaN 生长条件并将衬底偏角减小到 0.2°,生长出具有大无阶跃表面的 145 nm 厚膜层。接着,在电炉中氧化氮化铝层,然后使用 MOVPE 技术重新生长出 1500 nm 厚的 +c-GaN 层。通过将偏角减小到 0.2°,并优化-c-GaN 生长条件以避免形成小丘,可以实现无大台阶表面。这些结果为提高氮化镓横向 QPM 波长转换器件的效率铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metalorganic Vapor‐Phase Epitaxy of +c/−c GaN Polarity Inverted Bilayer for Transverse Quasi‐Phase‐Matched Wavelength Conversion Device
Photon‐pair generation based on optical parametric down‐conversion has attracted for the application as a light source for quantum information. Highly efficient wavelength‐conversion devices require a polarity‐inversion structure when using nitride semiconductors. A transverse quasi‐phase‐matching (QPM) polarity‐inverted GaN bilayer channel waveguide device is suitable for efficient wavelength conversion. This study designed a cross‐section device to satisfy the modal dispersion phase‐matching condition between the TM02 mode pump light and the TM00 mode signal/idler light. Moreover, an AlN oxidation interlayer fabricates the Ga‐polar/N‐polar (+c/−c) GaN layers via metalorganic vapor‐phase epitaxy (MOVPE). A 145 nm thick film layer with a macro‐step‐free surface is grown by optimizing the −c‐GaN growth conditions and reducing the substrate off‐angle to 0.2°. Next, the AlN layer is oxidized in an electric furnace and MOVPE is used to regrow a 1500 nm thick +c‐GaN layer. A macrosteps‐free surface can be achieved by reducing the off‐angle to 0.2° and optimizing the −c‐GaN growth conditions to avoid hillock formation. These results pave the way for improving the efficiency of GaN transverse QPM wavelength‐conversion devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信