火星压力下 CO2 DBD 辉光等离子体中 CO 的生成和迁移

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Qiang Fu, Zifan Ye, Honglin Guo, Zhixin Duan, Jialun Luo, Zhengshi Chang
{"title":"火星压力下 CO2 DBD 辉光等离子体中 CO 的生成和迁移","authors":"Qiang Fu, Zifan Ye, Honglin Guo, Zhixin Duan, Jialun Luo, Zhengshi Chang","doi":"10.1002/ppap.202400085","DOIUrl":null,"url":null,"abstract":"Dielectric barrier discharge (DBD) plasma is a potential tool in the field of in situ CO<jats:sub>2</jats:sub> conversion with the low‐pressure environment of Mars. CO is an important intermediate product in the conversion process of CO<jats:sub>2</jats:sub>. Understanding the pathways and dynamics that govern the generation of CO in CO<jats:sub>2</jats:sub> plasmas establishes the foundation for effective regulation. In this work, parallel‐plate DBD structure was employed in our experiment and one‐dimensional fluid simulation model. The findings indicate that CO primarily originates at the boundary of the cathode potential fall region, and it subsequently migrates toward the surface of instantaneous cathode where it accumulates. The thickness of CO‐enriched region is approximately 0.8 mm. During this process, CO migration speed reaches about 2000 m/s. It is worth noting that surface reactions at the instantaneous cathode and anode surfaces contribute only 0.24% to CO generation, in contrast to the predominant influence of impact dissociation reaction between CO<jats:sub>2</jats:sub> and electrons (e + CO<jats:sub>2</jats:sub> → 2e + CO + O<jats:sup>+</jats:sup>) at 53.21%, and two‐body decomposition reaction between O<jats:sup>+</jats:sup> and CO<jats:sub>2</jats:sub> (O<jats:sup>+</jats:sup> + CO<jats:sub>2</jats:sub> → O<jats:sup> +</jats:sup><jats:sub>2</jats:sub> + CO) at 35.88%. Finally, the primary factors influencing the migration of CO from production sites to enrichment regions are determined to be particle collisions and momentum exchange between ions and CO, followed by electro‐hydro dynamics force, while dielectrophoresis forces have minimal effect.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"47 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation and migration of CO in CO2 DBD glow plasma under Martian pressure\",\"authors\":\"Qiang Fu, Zifan Ye, Honglin Guo, Zhixin Duan, Jialun Luo, Zhengshi Chang\",\"doi\":\"10.1002/ppap.202400085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dielectric barrier discharge (DBD) plasma is a potential tool in the field of in situ CO<jats:sub>2</jats:sub> conversion with the low‐pressure environment of Mars. CO is an important intermediate product in the conversion process of CO<jats:sub>2</jats:sub>. Understanding the pathways and dynamics that govern the generation of CO in CO<jats:sub>2</jats:sub> plasmas establishes the foundation for effective regulation. In this work, parallel‐plate DBD structure was employed in our experiment and one‐dimensional fluid simulation model. The findings indicate that CO primarily originates at the boundary of the cathode potential fall region, and it subsequently migrates toward the surface of instantaneous cathode where it accumulates. The thickness of CO‐enriched region is approximately 0.8 mm. During this process, CO migration speed reaches about 2000 m/s. It is worth noting that surface reactions at the instantaneous cathode and anode surfaces contribute only 0.24% to CO generation, in contrast to the predominant influence of impact dissociation reaction between CO<jats:sub>2</jats:sub> and electrons (e + CO<jats:sub>2</jats:sub> → 2e + CO + O<jats:sup>+</jats:sup>) at 53.21%, and two‐body decomposition reaction between O<jats:sup>+</jats:sup> and CO<jats:sub>2</jats:sub> (O<jats:sup>+</jats:sup> + CO<jats:sub>2</jats:sub> → O<jats:sup> +</jats:sup><jats:sub>2</jats:sub> + CO) at 35.88%. Finally, the primary factors influencing the migration of CO from production sites to enrichment regions are determined to be particle collisions and momentum exchange between ions and CO, followed by electro‐hydro dynamics force, while dielectrophoresis forces have minimal effect.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400085\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400085","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

介质阻挡放电(DBD)等离子体是在火星低压环境下进行二氧化碳就地转化的一种潜在工具。二氧化碳是二氧化碳转化过程中的重要中间产物。了解二氧化碳等离子体中产生二氧化碳的途径和动态,为有效调节奠定了基础。在这项工作中,我们在实验和一维流体模拟模型中采用了平行板 DBD 结构。研究结果表明,CO 主要起源于阴极电位下降区的边界,随后向瞬时阴极表面迁移,并在该处聚集。CO 富集区的厚度约为 0.8 毫米。在此过程中,CO 的迁移速度约为 2000 米/秒。值得注意的是,瞬时阴极和阳极表面的表面反应对 CO 生成的贡献率仅为 0.24%,相比之下,CO2 与电子之间的撞击解离反应(e + CO2 → 2e + CO + O+)和 O+ 与 CO2 之间的双体分解反应(O+ + CO2 → O +2 + CO)对 CO 生成的贡献率分别为 53.21%和 35.88%。最后,确定影响 CO 从产地向富集区迁移的主要因素是粒子碰撞和离子与 CO 之间的动量交换,其次是电-水动力学力,而介电泳力的影响微乎其微。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation and migration of CO in CO2 DBD glow plasma under Martian pressure
Dielectric barrier discharge (DBD) plasma is a potential tool in the field of in situ CO2 conversion with the low‐pressure environment of Mars. CO is an important intermediate product in the conversion process of CO2. Understanding the pathways and dynamics that govern the generation of CO in CO2 plasmas establishes the foundation for effective regulation. In this work, parallel‐plate DBD structure was employed in our experiment and one‐dimensional fluid simulation model. The findings indicate that CO primarily originates at the boundary of the cathode potential fall region, and it subsequently migrates toward the surface of instantaneous cathode where it accumulates. The thickness of CO‐enriched region is approximately 0.8 mm. During this process, CO migration speed reaches about 2000 m/s. It is worth noting that surface reactions at the instantaneous cathode and anode surfaces contribute only 0.24% to CO generation, in contrast to the predominant influence of impact dissociation reaction between CO2 and electrons (e + CO2 → 2e + CO + O+) at 53.21%, and two‐body decomposition reaction between O+ and CO2 (O+ + CO2 → O +2 + CO) at 35.88%. Finally, the primary factors influencing the migration of CO from production sites to enrichment regions are determined to be particle collisions and momentum exchange between ions and CO, followed by electro‐hydro dynamics force, while dielectrophoresis forces have minimal effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Processes and Polymers
Plasma Processes and Polymers 物理-高分子科学
CiteScore
6.60
自引率
11.40%
发文量
150
审稿时长
3 months
期刊介绍: Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信