{"title":"多壁碳纳米管的电泳沉积:等离子体功能化和聚合的关键作用","authors":"Lynn Hein, Sylvain Coulombe, Renzo Cecere, Rosaire Mongrain","doi":"10.1002/ppap.202400137","DOIUrl":null,"url":null,"abstract":"The electrophoretic deposition of multi‐walled carbon nanotubes (MWCNTs) has been well‐researched; however, preparatory steps lead to MWCNT coating contamination and deposits often have weak adhesion to the substrate. This work targets these two weaknesses. First, MWCNTs were functionalized by nonthermal, radiofrequency plasma, producing oxygenated MWCNTs (O‐MWCNTs), with which water‐based suspensions were prepared. Second, an ethane‐based plasma polymer was applied on the metallic substrate as an interlayer to improve coating adhesion. O‐MWCNT coatings were produced at 5–40 V for 1–60 min. Homogeneous coatings with thicknesses up to 10 µm were achieved, the composition was 90‐95 at% carbon with the balance element being oxygen, and coating adhesion without damage was confirmed for shear stresses up to 16 Pa.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"34 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophoretic Deposition of Multi‐Walled Carbon Nanotubes: The Key Role of Plasma Functionalization and Polymerization\",\"authors\":\"Lynn Hein, Sylvain Coulombe, Renzo Cecere, Rosaire Mongrain\",\"doi\":\"10.1002/ppap.202400137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrophoretic deposition of multi‐walled carbon nanotubes (MWCNTs) has been well‐researched; however, preparatory steps lead to MWCNT coating contamination and deposits often have weak adhesion to the substrate. This work targets these two weaknesses. First, MWCNTs were functionalized by nonthermal, radiofrequency plasma, producing oxygenated MWCNTs (O‐MWCNTs), with which water‐based suspensions were prepared. Second, an ethane‐based plasma polymer was applied on the metallic substrate as an interlayer to improve coating adhesion. O‐MWCNT coatings were produced at 5–40 V for 1–60 min. Homogeneous coatings with thicknesses up to 10 µm were achieved, the composition was 90‐95 at% carbon with the balance element being oxygen, and coating adhesion without damage was confirmed for shear stresses up to 16 Pa.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400137\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400137","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
多壁碳纳米管(MWCNTs)的电泳沉积已经得到了充分的研究;然而,准备步骤会导致 MWCNT 涂层污染,而且沉积物与基底的附着力通常较弱。本研究针对这两个弱点进行了研究。首先,通过非热射频等离子体对 MWCNTs 进行功能化,生成含氧 MWCNTs(O-MWCNTs),并用其制备水基悬浮液。其次,在金属基底上使用乙烷基等离子聚合物作为中间层,以提高涂层的附着力。O-MWCNT 涂层在 5-40 V 的电压下持续 1-60 分钟。获得了厚度达 10 µm 的均匀涂层,碳的成分占 90-95% ,其余元素为氧,涂层附着力在剪切应力达 16 Pa 时无损坏。
Electrophoretic Deposition of Multi‐Walled Carbon Nanotubes: The Key Role of Plasma Functionalization and Polymerization
The electrophoretic deposition of multi‐walled carbon nanotubes (MWCNTs) has been well‐researched; however, preparatory steps lead to MWCNT coating contamination and deposits often have weak adhesion to the substrate. This work targets these two weaknesses. First, MWCNTs were functionalized by nonthermal, radiofrequency plasma, producing oxygenated MWCNTs (O‐MWCNTs), with which water‐based suspensions were prepared. Second, an ethane‐based plasma polymer was applied on the metallic substrate as an interlayer to improve coating adhesion. O‐MWCNT coatings were produced at 5–40 V for 1–60 min. Homogeneous coatings with thicknesses up to 10 µm were achieved, the composition was 90‐95 at% carbon with the balance element being oxygen, and coating adhesion without damage was confirmed for shear stresses up to 16 Pa.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.