Shu-Juan Wang, Lu Wang, Hong-Zhe Su, Zhi-Cheng Wu, Qiao-Gen Zhang, Wei Fan, Xin-Li Jing
{"title":"室温自愈合和可回收 PDMS 弹性体具有优异的机械性能,可用于三电纳米发电机","authors":"Shu-Juan Wang, Lu Wang, Hong-Zhe Su, Zhi-Cheng Wu, Qiao-Gen Zhang, Wei Fan, Xin-Li Jing","doi":"10.1007/s10118-024-3178-5","DOIUrl":null,"url":null,"abstract":"<div><p>Polydimethylsiloxane (PDMS) is an electron-withdrawing material that is widely used in triboelectric nanogenerators (TENGs). However, PDMS has poor mechanical properties after curing and is easily damaged when subjected to long-term workloads. Thus, the long-term stable operation of TENGs under mechanical deformation cannot be guaranteed. In this work, multiple hydrogen bonds and aromatic disulfide bonds were introduced into PDMS elastomers. These elastomers exhibited high toughness (a tensile strength of 1.91 MPa and an elongation at break of 340%), good recyclability, and room-temperature self-healing properties (healing efficiency of 96.4% in 24 h). Recyclable sandwich-like triboelectric nanogenerators with excellent electrical output performance (13.5 V) and room-temperature self-healing performance (24 h, 98% recovery of self-generating performance) were prepared by utilizing the hydrogen bonding between the PDMS elastomer and MXene. The work reported herein offers theoretical guidance and a compelling strategy for developing high-performance TENG negative friction layers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1566 - 1577"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature Self-healing and Recyclable PDMS Elastomers with Superior Mechanical Properties for Triboelectric Nanogenerators\",\"authors\":\"Shu-Juan Wang, Lu Wang, Hong-Zhe Su, Zhi-Cheng Wu, Qiao-Gen Zhang, Wei Fan, Xin-Li Jing\",\"doi\":\"10.1007/s10118-024-3178-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polydimethylsiloxane (PDMS) is an electron-withdrawing material that is widely used in triboelectric nanogenerators (TENGs). However, PDMS has poor mechanical properties after curing and is easily damaged when subjected to long-term workloads. Thus, the long-term stable operation of TENGs under mechanical deformation cannot be guaranteed. In this work, multiple hydrogen bonds and aromatic disulfide bonds were introduced into PDMS elastomers. These elastomers exhibited high toughness (a tensile strength of 1.91 MPa and an elongation at break of 340%), good recyclability, and room-temperature self-healing properties (healing efficiency of 96.4% in 24 h). Recyclable sandwich-like triboelectric nanogenerators with excellent electrical output performance (13.5 V) and room-temperature self-healing performance (24 h, 98% recovery of self-generating performance) were prepared by utilizing the hydrogen bonding between the PDMS elastomer and MXene. The work reported herein offers theoretical guidance and a compelling strategy for developing high-performance TENG negative friction layers.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 10\",\"pages\":\"1566 - 1577\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3178-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3178-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
聚二甲基硅氧烷(PDMS)是一种电子吸收材料,被广泛用于三电纳米发电机(TENG)。然而,PDMS 固化后的机械性能较差,长期工作时容易损坏。因此,无法保证 TENG 在机械变形条件下长期稳定运行。在这项工作中,在 PDMS 弹性体中引入了多个氢键和芳香族二硫键。这些弹性体具有高韧性(拉伸强度为 1.91 兆帕,断裂伸长率为 340%)、良好的可回收性和室温自愈合特性(24 小时内愈合效率为 96.4%)。利用 PDMS 弹性体和 MXene 之间的氢键,制备出了可回收的三明治状三电纳米发电机,它具有优异的电输出性能(13.5 V)和室温自愈性能(24 小时内,自发电性能恢复 98%)。本文所报告的工作为开发高性能 TENG 负摩擦层提供了理论指导和令人信服的策略。
Room-temperature Self-healing and Recyclable PDMS Elastomers with Superior Mechanical Properties for Triboelectric Nanogenerators
Polydimethylsiloxane (PDMS) is an electron-withdrawing material that is widely used in triboelectric nanogenerators (TENGs). However, PDMS has poor mechanical properties after curing and is easily damaged when subjected to long-term workloads. Thus, the long-term stable operation of TENGs under mechanical deformation cannot be guaranteed. In this work, multiple hydrogen bonds and aromatic disulfide bonds were introduced into PDMS elastomers. These elastomers exhibited high toughness (a tensile strength of 1.91 MPa and an elongation at break of 340%), good recyclability, and room-temperature self-healing properties (healing efficiency of 96.4% in 24 h). Recyclable sandwich-like triboelectric nanogenerators with excellent electrical output performance (13.5 V) and room-temperature self-healing performance (24 h, 98% recovery of self-generating performance) were prepared by utilizing the hydrogen bonding between the PDMS elastomer and MXene. The work reported herein offers theoretical guidance and a compelling strategy for developing high-performance TENG negative friction layers.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.