Bin-Bo Wang, Rong Huang, Xin Wang, Tao Jiang, Yi Wang, Shuai Du, Fa-Lin Li, Jin Zhu, Song-Qi Ma
{"title":"通过断链-交联策略将聚(己二酸丁二醇酯-共对苯二甲酸酯)升级再造为双共价适应性网络","authors":"Bin-Bo Wang, Rong Huang, Xin Wang, Tao Jiang, Yi Wang, Shuai Du, Fa-Lin Li, Jin Zhu, Song-Qi Ma","doi":"10.1007/s10118-024-3179-4","DOIUrl":null,"url":null,"abstract":"<div><p>Poly(butylene adipate-co-terephthalate) (PBAT), a widely studied biodegradable material, has not effectively addressed the problem of plastic waste. Taking into consideration the cost-effectiveness, upcycling PBAT should take precedence over direct composting degradation. The present work adopts a chain breaking-crosslinking strategy, upcycling PBAT into dual covalent adaptable networks (CANs). During the chain-breaking stage, the ammonolysis between PBAT and polyethyleneimine (PEI) established the primary crosslinked network. Subsequently, styrene maleic anhydride copolymer (SMA) reacted with the hydroxyl group, culminating in the formation of dual covalent adaptable networks. In contrast to PBAT, the PBAT-dual-CANs exhibited a notable Young’s modulus of 239 MPa, alongside an inherent resistance to creep and solvents. Owing to catalysis from neighboring carboxyl group and excess hydroxyl groups, the PBAT-dual-CANs exhibited fast stress relaxation. Additionally, they could be recycled through extrusion and hot-press reprocessing, while retaining their biodegradability. This straightforward strategy offers a solution for dealing with plastic waste.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1505 - 1513"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling of Poly(butylene adipate-co-terephthalate) into Dual Covalent Adaptable Networks through Chain Breaking-Crosslinking Strategy\",\"authors\":\"Bin-Bo Wang, Rong Huang, Xin Wang, Tao Jiang, Yi Wang, Shuai Du, Fa-Lin Li, Jin Zhu, Song-Qi Ma\",\"doi\":\"10.1007/s10118-024-3179-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poly(butylene adipate-co-terephthalate) (PBAT), a widely studied biodegradable material, has not effectively addressed the problem of plastic waste. Taking into consideration the cost-effectiveness, upcycling PBAT should take precedence over direct composting degradation. The present work adopts a chain breaking-crosslinking strategy, upcycling PBAT into dual covalent adaptable networks (CANs). During the chain-breaking stage, the ammonolysis between PBAT and polyethyleneimine (PEI) established the primary crosslinked network. Subsequently, styrene maleic anhydride copolymer (SMA) reacted with the hydroxyl group, culminating in the formation of dual covalent adaptable networks. In contrast to PBAT, the PBAT-dual-CANs exhibited a notable Young’s modulus of 239 MPa, alongside an inherent resistance to creep and solvents. Owing to catalysis from neighboring carboxyl group and excess hydroxyl groups, the PBAT-dual-CANs exhibited fast stress relaxation. Additionally, they could be recycled through extrusion and hot-press reprocessing, while retaining their biodegradability. This straightforward strategy offers a solution for dealing with plastic waste.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 10\",\"pages\":\"1505 - 1513\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3179-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3179-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Upcycling of Poly(butylene adipate-co-terephthalate) into Dual Covalent Adaptable Networks through Chain Breaking-Crosslinking Strategy
Poly(butylene adipate-co-terephthalate) (PBAT), a widely studied biodegradable material, has not effectively addressed the problem of plastic waste. Taking into consideration the cost-effectiveness, upcycling PBAT should take precedence over direct composting degradation. The present work adopts a chain breaking-crosslinking strategy, upcycling PBAT into dual covalent adaptable networks (CANs). During the chain-breaking stage, the ammonolysis between PBAT and polyethyleneimine (PEI) established the primary crosslinked network. Subsequently, styrene maleic anhydride copolymer (SMA) reacted with the hydroxyl group, culminating in the formation of dual covalent adaptable networks. In contrast to PBAT, the PBAT-dual-CANs exhibited a notable Young’s modulus of 239 MPa, alongside an inherent resistance to creep and solvents. Owing to catalysis from neighboring carboxyl group and excess hydroxyl groups, the PBAT-dual-CANs exhibited fast stress relaxation. Additionally, they could be recycled through extrusion and hot-press reprocessing, while retaining their biodegradability. This straightforward strategy offers a solution for dealing with plastic waste.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.