基于二硫代乙醛共价自适应网络的可回收高性能碳纤维增强环氧树脂复合材料

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Gui-Lian Shi, Ting-Cheng Li, Dao-Hong Zhang, Jun-Heng Zhang
{"title":"基于二硫代乙醛共价自适应网络的可回收高性能碳纤维增强环氧树脂复合材料","authors":"Gui-Lian Shi,&nbsp;Ting-Cheng Li,&nbsp;Dao-Hong Zhang,&nbsp;Jun-Heng Zhang","doi":"10.1007/s10118-024-3191-8","DOIUrl":null,"url":null,"abstract":"<div><p>Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy. Despite the use of dynamic chemistry, developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials. Here, we developed a high-strength recyclable epoxy resin (HREP) based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A (DGEBA), pentaerythritol tetra(3-mercapto-propionate) (PETMP), and vanillin epoxy resin (VEPR). At high temperatures, the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network, giving it significant reprocessing ability. Moreover, HREP exhibited excellent solvent resistance due to the increased cross-linking density. Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids (HBP-AMIM<sup>+</sup>PF<sub>6</sub><sup>−</sup>) as the reinforcing agent, high performance CFRPs were successfully prepared. The tensile strength, interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of the optimized formulation (HREP20/CF-HBPPF<sub>6</sub>) were 1016.1, 70.8 and 76.0 MPa, respectively. In addition, the CFRPs demonstrated excellent solvent and acid/alkali-resistance. The CFRPs could completely degrade within 24 h in DMSO at 140 °C, and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1514 - 1524"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recyclable High-performance Carbon Fiber Reinforced Epoxy Composites Based on Dithioacetal Covalent Adaptive Network\",\"authors\":\"Gui-Lian Shi,&nbsp;Ting-Cheng Li,&nbsp;Dao-Hong Zhang,&nbsp;Jun-Heng Zhang\",\"doi\":\"10.1007/s10118-024-3191-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy. Despite the use of dynamic chemistry, developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials. Here, we developed a high-strength recyclable epoxy resin (HREP) based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A (DGEBA), pentaerythritol tetra(3-mercapto-propionate) (PETMP), and vanillin epoxy resin (VEPR). At high temperatures, the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network, giving it significant reprocessing ability. Moreover, HREP exhibited excellent solvent resistance due to the increased cross-linking density. Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids (HBP-AMIM<sup>+</sup>PF<sub>6</sub><sup>−</sup>) as the reinforcing agent, high performance CFRPs were successfully prepared. The tensile strength, interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of the optimized formulation (HREP20/CF-HBPPF<sub>6</sub>) were 1016.1, 70.8 and 76.0 MPa, respectively. In addition, the CFRPs demonstrated excellent solvent and acid/alkali-resistance. The CFRPs could completely degrade within 24 h in DMSO at 140 °C, and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 10\",\"pages\":\"1514 - 1524\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3191-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3191-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维增强复合材料的回收利用对于可持续发展和循环经济非常重要。尽管使用了动态化学,但由于材料的动态特性和机械特性之间的相互排斥性,开发高强度可回收碳纤维增强复合材料仍是一项重大挑战。在此,我们利用二缩水甘油醚双酚 A(DGEBA)、季戊四醇四(3-巯基丙酸酯)(PETMP)和香兰素环氧树脂(VEPR),开发了一种基于动态二硫代乙醛共价自适应网络的高强度可回收环氧树脂(HREP)。在高温下,热激活的二硫代乙酸酯的交换反应加速了网络的重排,使其具有显著的再加工能力。此外,由于交联密度增加,HREP 表现出优异的耐溶剂性。以这种高强度可回收环氧树脂为基体,以超支化离子液体(HBP-AMIM+PF6-)改性的碳纤维为增强剂,成功制备出了高性能 CFRP。优化配方(HREP20/CF-HBPPF6)的拉伸强度、界面剪切强度(IFSS)和层间剪切强度(ILSS)分别为 1016.1、70.8 和 76.0 兆帕。此外,CFRP 还具有优异的耐溶剂性和抗酸碱性。CFRP 在 140 °C 的 DMSO 溶液中可在 24 小时内完全降解,经过多次降解循环后,再生 CF 仍能保持与原始 CF 相同的拉伸强度和 ILSS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recyclable High-performance Carbon Fiber Reinforced Epoxy Composites Based on Dithioacetal Covalent Adaptive Network

Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy. Despite the use of dynamic chemistry, developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials. Here, we developed a high-strength recyclable epoxy resin (HREP) based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A (DGEBA), pentaerythritol tetra(3-mercapto-propionate) (PETMP), and vanillin epoxy resin (VEPR). At high temperatures, the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network, giving it significant reprocessing ability. Moreover, HREP exhibited excellent solvent resistance due to the increased cross-linking density. Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids (HBP-AMIM+PF6) as the reinforcing agent, high performance CFRPs were successfully prepared. The tensile strength, interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of the optimized formulation (HREP20/CF-HBPPF6) were 1016.1, 70.8 and 76.0 MPa, respectively. In addition, the CFRPs demonstrated excellent solvent and acid/alkali-resistance. The CFRPs could completely degrade within 24 h in DMSO at 140 °C, and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信