{"title":"生理酸碱度条件下聚合物水凝胶的光电开关性螺吡啶赋能","authors":"Cong Liao, Meng-Qi Du, Chuang Li","doi":"10.1007/s10118-024-3211-8","DOIUrl":null,"url":null,"abstract":"<div><p>The incorporation of molecular switches into polymer networks has been a powerful approach for the development of functional polymer materials that display macroscopic actuation and function enabled directly by molecular changes. However, such materials sometimes require harsh conditions to perform their functions, and the design of new molecular photoswitches that can function under physiological conditions is highly needed. Here, we report the design and synthesis of a spiropyridine-based photoswitchable hydrogel that exhibits light-driven actuation at physiological pH. Owing to its high p<i>K</i><sub>a</sub>, spiropyridine maintains its ring-open protonated form at neutral pH, and the resulting hydrogel remains in a swollen state. Upon irradiation with visible light, the ring closure of spiropyridine leads to a decrease in the charge and a reduction in the volume of the hydrogel. The contracted gel could spontaneously recover to its expanding state in the dark, and this process is highly dynamic and reversible when the light is switched on and off. Furthermore, the hydrogel shows switchable fluorescence in response to visible light. Bending deformation is observed in the hydrogel thin films upon irradiation from one side. Importantly, the independence of this spiropyridine hydrogel from the acidic environment makes it biotolerant and shows excellent biocompatibility. This biocompatible spiropyridine hydrogel might have important biorelated applications in the future.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1602 - 1609"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoswitchable Spiropyridine Enabled Photoactuation of Polymeric Hydrogels under Physiological pH Conditions\",\"authors\":\"Cong Liao, Meng-Qi Du, Chuang Li\",\"doi\":\"10.1007/s10118-024-3211-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The incorporation of molecular switches into polymer networks has been a powerful approach for the development of functional polymer materials that display macroscopic actuation and function enabled directly by molecular changes. However, such materials sometimes require harsh conditions to perform their functions, and the design of new molecular photoswitches that can function under physiological conditions is highly needed. Here, we report the design and synthesis of a spiropyridine-based photoswitchable hydrogel that exhibits light-driven actuation at physiological pH. Owing to its high p<i>K</i><sub>a</sub>, spiropyridine maintains its ring-open protonated form at neutral pH, and the resulting hydrogel remains in a swollen state. Upon irradiation with visible light, the ring closure of spiropyridine leads to a decrease in the charge and a reduction in the volume of the hydrogel. The contracted gel could spontaneously recover to its expanding state in the dark, and this process is highly dynamic and reversible when the light is switched on and off. Furthermore, the hydrogel shows switchable fluorescence in response to visible light. Bending deformation is observed in the hydrogel thin films upon irradiation from one side. Importantly, the independence of this spiropyridine hydrogel from the acidic environment makes it biotolerant and shows excellent biocompatibility. This biocompatible spiropyridine hydrogel might have important biorelated applications in the future.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 10\",\"pages\":\"1602 - 1609\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3211-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3211-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Photoswitchable Spiropyridine Enabled Photoactuation of Polymeric Hydrogels under Physiological pH Conditions
The incorporation of molecular switches into polymer networks has been a powerful approach for the development of functional polymer materials that display macroscopic actuation and function enabled directly by molecular changes. However, such materials sometimes require harsh conditions to perform their functions, and the design of new molecular photoswitches that can function under physiological conditions is highly needed. Here, we report the design and synthesis of a spiropyridine-based photoswitchable hydrogel that exhibits light-driven actuation at physiological pH. Owing to its high pKa, spiropyridine maintains its ring-open protonated form at neutral pH, and the resulting hydrogel remains in a swollen state. Upon irradiation with visible light, the ring closure of spiropyridine leads to a decrease in the charge and a reduction in the volume of the hydrogel. The contracted gel could spontaneously recover to its expanding state in the dark, and this process is highly dynamic and reversible when the light is switched on and off. Furthermore, the hydrogel shows switchable fluorescence in response to visible light. Bending deformation is observed in the hydrogel thin films upon irradiation from one side. Importantly, the independence of this spiropyridine hydrogel from the acidic environment makes it biotolerant and shows excellent biocompatibility. This biocompatible spiropyridine hydrogel might have important biorelated applications in the future.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.