Francisco G. Moscoso, Juan J. Romero-Guerrero, David Rodriguez-Lucena, José María Pedrosa, Carolina Carrillo-Carrión
{"title":"构建透明膜的纳米级卟啉金属有机框架,用作多反应光学气体传感器","authors":"Francisco G. Moscoso, Juan J. Romero-Guerrero, David Rodriguez-Lucena, José María Pedrosa, Carolina Carrillo-Carrión","doi":"10.1002/smsc.202400210","DOIUrl":null,"url":null,"abstract":"The well-known and excellent colorimetric sensing capacity of porphyrins, along with the exceptional structural properties of metal–organic frameworks (MOFs), make porphyrin-based MOFs, such as PCN-222, ideal candidates for the construction of a chemical sensor based on absorbance. However, to the best of authors’ knowledge, no high-quality porphyrin-based MOF gas sensors have been developed to date, most likely due to the difficulties in: 1) preparing nanosized porphyrin-MOFs to minimize scattering in absorbance measurements; and 2) incorporating MOFs into transparent membranes for practical use. Herein, a simple and fast microwave-assisted method for preparing high-quality nanosized PCN-222 crystals and their metalated derivatives PCN-222(M) is reported to finely tune the sensing response. Next, the successful dispersion of these PCN-222(M) nanoparticles into poly(dimethylsiloxane) to create flexible and transparent membranes is demonstrated. This integration yields a multiresponsive optical gas sensor exhibiting excellent sensitivity and the ability to discriminate between various volatile organic compounds via pattern recognition identification.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosized Porphyrinic Metal–Organic Frameworks for the Construction of Transparent Membranes as a Multiresponsive Optical Gas Sensor\",\"authors\":\"Francisco G. Moscoso, Juan J. Romero-Guerrero, David Rodriguez-Lucena, José María Pedrosa, Carolina Carrillo-Carrión\",\"doi\":\"10.1002/smsc.202400210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The well-known and excellent colorimetric sensing capacity of porphyrins, along with the exceptional structural properties of metal–organic frameworks (MOFs), make porphyrin-based MOFs, such as PCN-222, ideal candidates for the construction of a chemical sensor based on absorbance. However, to the best of authors’ knowledge, no high-quality porphyrin-based MOF gas sensors have been developed to date, most likely due to the difficulties in: 1) preparing nanosized porphyrin-MOFs to minimize scattering in absorbance measurements; and 2) incorporating MOFs into transparent membranes for practical use. Herein, a simple and fast microwave-assisted method for preparing high-quality nanosized PCN-222 crystals and their metalated derivatives PCN-222(M) is reported to finely tune the sensing response. Next, the successful dispersion of these PCN-222(M) nanoparticles into poly(dimethylsiloxane) to create flexible and transparent membranes is demonstrated. This integration yields a multiresponsive optical gas sensor exhibiting excellent sensitivity and the ability to discriminate between various volatile organic compounds via pattern recognition identification.\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanosized Porphyrinic Metal–Organic Frameworks for the Construction of Transparent Membranes as a Multiresponsive Optical Gas Sensor
The well-known and excellent colorimetric sensing capacity of porphyrins, along with the exceptional structural properties of metal–organic frameworks (MOFs), make porphyrin-based MOFs, such as PCN-222, ideal candidates for the construction of a chemical sensor based on absorbance. However, to the best of authors’ knowledge, no high-quality porphyrin-based MOF gas sensors have been developed to date, most likely due to the difficulties in: 1) preparing nanosized porphyrin-MOFs to minimize scattering in absorbance measurements; and 2) incorporating MOFs into transparent membranes for practical use. Herein, a simple and fast microwave-assisted method for preparing high-quality nanosized PCN-222 crystals and their metalated derivatives PCN-222(M) is reported to finely tune the sensing response. Next, the successful dispersion of these PCN-222(M) nanoparticles into poly(dimethylsiloxane) to create flexible and transparent membranes is demonstrated. This integration yields a multiresponsive optical gas sensor exhibiting excellent sensitivity and the ability to discriminate between various volatile organic compounds via pattern recognition identification.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.