Andrea Veciana, Sarah Steiner, Qiao Tang, Vitaly Pustovalov, Joaquin Llacer-Wintle, Jiang Wu, Xiang-Zhong Chen, Trust Manyiwa, Venecio U. Ultra, Beltzane Garcia-Cirera, Josep Puigmartí-Luis, Carlos Franco, David J. Janssen, Laura Nyström, Samy Boulos, Salvador Pané
{"title":"打破全氟辛烷磺酸链:使用 BaTiO3 纳米粒子压电催化分解全氟辛烷磺酸","authors":"Andrea Veciana, Sarah Steiner, Qiao Tang, Vitaly Pustovalov, Joaquin Llacer-Wintle, Jiang Wu, Xiang-Zhong Chen, Trust Manyiwa, Venecio U. Ultra, Beltzane Garcia-Cirera, Josep Puigmartí-Luis, Carlos Franco, David J. Janssen, Laura Nyström, Samy Boulos, Salvador Pané","doi":"10.1002/smsc.202400337","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) pose significant environmental and health risks due to their ubiquitous presence and persistence in water systems. Herein, the efficacy of piezocatalysis using barium titanate nanoparticles under ultrasound irradiation for the degradation and defluorination of perfluorooctane sulfonate (PFOS) in water is investigated. The research demonstrates a substantial 90.5% degradation and 29% defluorination of PFOS after 6 h of treatment, highlighting the potential of piezocatalysis as a promising approach for PFAS degradation. Additionally, the quantification of degradation products elucidates the transformation pathways of PFOS, suggesting a stepwise chain-shortening mechanism. The findings underscore the importance of continued research in optimizing piezocatalytic processes and exploring synergistic approaches with other advanced oxidation methods to effectively address PFAS contamination challenges. These efforts are essential for advancing sustainable water treatment strategies and mitigating the environmental and health hazards associated with PFAS contamination.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"20 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the Perfluorooctane Sulfonate Chain: Piezocatalytic Decomposition of PFOS Using BaTiO3 Nanoparticles\",\"authors\":\"Andrea Veciana, Sarah Steiner, Qiao Tang, Vitaly Pustovalov, Joaquin Llacer-Wintle, Jiang Wu, Xiang-Zhong Chen, Trust Manyiwa, Venecio U. Ultra, Beltzane Garcia-Cirera, Josep Puigmartí-Luis, Carlos Franco, David J. Janssen, Laura Nyström, Samy Boulos, Salvador Pané\",\"doi\":\"10.1002/smsc.202400337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Per- and polyfluoroalkyl substances (PFAS) pose significant environmental and health risks due to their ubiquitous presence and persistence in water systems. Herein, the efficacy of piezocatalysis using barium titanate nanoparticles under ultrasound irradiation for the degradation and defluorination of perfluorooctane sulfonate (PFOS) in water is investigated. The research demonstrates a substantial 90.5% degradation and 29% defluorination of PFOS after 6 h of treatment, highlighting the potential of piezocatalysis as a promising approach for PFAS degradation. Additionally, the quantification of degradation products elucidates the transformation pathways of PFOS, suggesting a stepwise chain-shortening mechanism. The findings underscore the importance of continued research in optimizing piezocatalytic processes and exploring synergistic approaches with other advanced oxidation methods to effectively address PFAS contamination challenges. These efforts are essential for advancing sustainable water treatment strategies and mitigating the environmental and health hazards associated with PFAS contamination.\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Breaking the Perfluorooctane Sulfonate Chain: Piezocatalytic Decomposition of PFOS Using BaTiO3 Nanoparticles
Per- and polyfluoroalkyl substances (PFAS) pose significant environmental and health risks due to their ubiquitous presence and persistence in water systems. Herein, the efficacy of piezocatalysis using barium titanate nanoparticles under ultrasound irradiation for the degradation and defluorination of perfluorooctane sulfonate (PFOS) in water is investigated. The research demonstrates a substantial 90.5% degradation and 29% defluorination of PFOS after 6 h of treatment, highlighting the potential of piezocatalysis as a promising approach for PFAS degradation. Additionally, the quantification of degradation products elucidates the transformation pathways of PFOS, suggesting a stepwise chain-shortening mechanism. The findings underscore the importance of continued research in optimizing piezocatalytic processes and exploring synergistic approaches with other advanced oxidation methods to effectively address PFAS contamination challenges. These efforts are essential for advancing sustainable water treatment strategies and mitigating the environmental and health hazards associated with PFAS contamination.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.