David Prichett, Joan M. Bonilla Pagan, Casey L. S. Hodgkins, Jeremy M. Testa
{"title":"沿海平原河口水柱呼吸速率的控制因素:长期时间序列测量的启示","authors":"David Prichett, Joan M. Bonilla Pagan, Casey L. S. Hodgkins, Jeremy M. Testa","doi":"10.1007/s12237-024-01412-0","DOIUrl":null,"url":null,"abstract":"<p>Rates of ecosystem metabolic properties, such as plankton community respiration, can be used as an assessment of the eutrophication state of a waterbody and are the primary biogeochemical rates causing oxygen depletion in coastal waters. However, given the additional labor involved in measuring biogeochemical rate processes, few monitoring programs regularly measure these properties, and thus, few long-term monitoring records of plankton respiration exist. An 8-year, biweekly plankton community respiration rate time series was analyzed as part of a monitoring program situated in the lower Patuxent River estuary, a tributary of Chesapeake Bay. We found that particulate nutrients (nitrogen and phosphorus) were the most highly correlated covariates with respiration rate. Additionally, statistical and kinetic models including variables both water temperature and particulate nitrogen were able to explain 74% of the variability in respiration. Over the long-term record, both particulate nutrients and respiration rate were elevated when measured at higher tides. Separate measurements of respiration rate during 10 consecutive days and during high and low tide on three separate days also support the enhancement of respiration with high tide. The enhancement was likely due to the import of particulate nutrients from the highly productive mid-bay region. This analysis of the longest consistently measured community respiration rate dataset in Chesapeake Bay has implications for how to interpret long-term records of measurements made at fixed locations in estuaries.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"89 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controls on Water-Column Respiration Rates in a Coastal Plain Estuary: Insights from Long-Term Time-Series Measurements\",\"authors\":\"David Prichett, Joan M. Bonilla Pagan, Casey L. S. Hodgkins, Jeremy M. Testa\",\"doi\":\"10.1007/s12237-024-01412-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rates of ecosystem metabolic properties, such as plankton community respiration, can be used as an assessment of the eutrophication state of a waterbody and are the primary biogeochemical rates causing oxygen depletion in coastal waters. However, given the additional labor involved in measuring biogeochemical rate processes, few monitoring programs regularly measure these properties, and thus, few long-term monitoring records of plankton respiration exist. An 8-year, biweekly plankton community respiration rate time series was analyzed as part of a monitoring program situated in the lower Patuxent River estuary, a tributary of Chesapeake Bay. We found that particulate nutrients (nitrogen and phosphorus) were the most highly correlated covariates with respiration rate. Additionally, statistical and kinetic models including variables both water temperature and particulate nitrogen were able to explain 74% of the variability in respiration. Over the long-term record, both particulate nutrients and respiration rate were elevated when measured at higher tides. Separate measurements of respiration rate during 10 consecutive days and during high and low tide on three separate days also support the enhancement of respiration with high tide. The enhancement was likely due to the import of particulate nutrients from the highly productive mid-bay region. This analysis of the longest consistently measured community respiration rate dataset in Chesapeake Bay has implications for how to interpret long-term records of measurements made at fixed locations in estuaries.</p>\",\"PeriodicalId\":11921,\"journal\":{\"name\":\"Estuaries and Coasts\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estuaries and Coasts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12237-024-01412-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01412-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Controls on Water-Column Respiration Rates in a Coastal Plain Estuary: Insights from Long-Term Time-Series Measurements
Rates of ecosystem metabolic properties, such as plankton community respiration, can be used as an assessment of the eutrophication state of a waterbody and are the primary biogeochemical rates causing oxygen depletion in coastal waters. However, given the additional labor involved in measuring biogeochemical rate processes, few monitoring programs regularly measure these properties, and thus, few long-term monitoring records of plankton respiration exist. An 8-year, biweekly plankton community respiration rate time series was analyzed as part of a monitoring program situated in the lower Patuxent River estuary, a tributary of Chesapeake Bay. We found that particulate nutrients (nitrogen and phosphorus) were the most highly correlated covariates with respiration rate. Additionally, statistical and kinetic models including variables both water temperature and particulate nitrogen were able to explain 74% of the variability in respiration. Over the long-term record, both particulate nutrients and respiration rate were elevated when measured at higher tides. Separate measurements of respiration rate during 10 consecutive days and during high and low tide on three separate days also support the enhancement of respiration with high tide. The enhancement was likely due to the import of particulate nutrients from the highly productive mid-bay region. This analysis of the longest consistently measured community respiration rate dataset in Chesapeake Bay has implications for how to interpret long-term records of measurements made at fixed locations in estuaries.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.