{"title":"基于分子动力学的切削镍基超级合金 GH4169 中的相变研究","authors":"Yihang Fan, Shufan Yang, Zhaopeng Hao","doi":"10.1007/s11665-024-09989-0","DOIUrl":null,"url":null,"abstract":"<p>GH4169 alloy is a representative nickel-based superalloy, which is widely used in the aerospace field. However, GH4169 is prone to phase change during cutting. At the nanoscale, few studies have revealed the formation of phase transition and the relationship between cutting parameters and phase transition formation. Therefore, the phase transformation mechanism of the CBN (cubic boron nitride) cutting tool in nano-cutting nickel-based superalloy GH4169 was studied by the molecular dynamics (MD) method. Dislocation nucleation and dislocation motion in the cutting process were studied. The variation of dislocation density and cutting force and the internal stress distribution of the workpiece are analyzed. The influence of cutting depth on phase change evolution during the cutting process was studied by radial distribution function, coordination number analysis, and common neighbor analysis. The results show that the increase of cutting depth makes the dislocation density increase obviously, the required cutting force is larger, and the stress concentration is more significant. At the same time, the cutting depth will also affect the transformation of the crystal structure. The greater the cutting depth, the more intense the phase change inside the workpiece.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"2 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Phase Transformation in Cutting Nickel-Based Superalloy GH4169 Based on Molecular Dynamics\",\"authors\":\"Yihang Fan, Shufan Yang, Zhaopeng Hao\",\"doi\":\"10.1007/s11665-024-09989-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>GH4169 alloy is a representative nickel-based superalloy, which is widely used in the aerospace field. However, GH4169 is prone to phase change during cutting. At the nanoscale, few studies have revealed the formation of phase transition and the relationship between cutting parameters and phase transition formation. Therefore, the phase transformation mechanism of the CBN (cubic boron nitride) cutting tool in nano-cutting nickel-based superalloy GH4169 was studied by the molecular dynamics (MD) method. Dislocation nucleation and dislocation motion in the cutting process were studied. The variation of dislocation density and cutting force and the internal stress distribution of the workpiece are analyzed. The influence of cutting depth on phase change evolution during the cutting process was studied by radial distribution function, coordination number analysis, and common neighbor analysis. The results show that the increase of cutting depth makes the dislocation density increase obviously, the required cutting force is larger, and the stress concentration is more significant. At the same time, the cutting depth will also affect the transformation of the crystal structure. The greater the cutting depth, the more intense the phase change inside the workpiece.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-09989-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-09989-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on Phase Transformation in Cutting Nickel-Based Superalloy GH4169 Based on Molecular Dynamics
GH4169 alloy is a representative nickel-based superalloy, which is widely used in the aerospace field. However, GH4169 is prone to phase change during cutting. At the nanoscale, few studies have revealed the formation of phase transition and the relationship between cutting parameters and phase transition formation. Therefore, the phase transformation mechanism of the CBN (cubic boron nitride) cutting tool in nano-cutting nickel-based superalloy GH4169 was studied by the molecular dynamics (MD) method. Dislocation nucleation and dislocation motion in the cutting process were studied. The variation of dislocation density and cutting force and the internal stress distribution of the workpiece are analyzed. The influence of cutting depth on phase change evolution during the cutting process was studied by radial distribution function, coordination number analysis, and common neighbor analysis. The results show that the increase of cutting depth makes the dislocation density increase obviously, the required cutting force is larger, and the stress concentration is more significant. At the same time, the cutting depth will also affect the transformation of the crystal structure. The greater the cutting depth, the more intense the phase change inside the workpiece.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered