Prakash Kumar, M. R. Ramesh, Mrityunjay Doddamani, S. Narendranath
{"title":"使用纳米复合疏水涂层增强镀锌铁皮的防腐防污性能","authors":"Prakash Kumar, M. R. Ramesh, Mrityunjay Doddamani, S. Narendranath","doi":"10.1007/s11665-024-10035-2","DOIUrl":null,"url":null,"abstract":"<p>Nanocomposite hydrophobic coatings have garnered substantial interest in recent times due to their remarkable anticorrosion and antifouling attributes. These coatings are designed to repel water and thwart the adherence of contaminants, rendering them valuable for an array of applications, including self-cleaning surfaces, anti-icing coatings, marine protection, and biomedical uses. This study delves into the fabrication of nanocomposite coatings, incorporating mixed oxide nanoparticles of CuO-MgO, MgO-ZnO, and CuO-ZnO at varying weight percentages within a poly (lactic acid) (PLA) matrix. Surface morphology and elemental composition were examined through Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive x-ray Analysis (EDAX). The chemical composition of the coatings was assessed using Fourier Transform Infrared Spectroscopy (FTIR), revealing structural changes specific to PLA with Mg-Zn nanocomposite coating. The wettability studies indicate that the PLA/Cu-Mg coated sample exhibits superior hydrophobic properties, with a water contact angle (CA) of 98.2°. This value represents a remarkable 48.7 % increase compared to the bare Galvanised iron (GI) substrate. The coating's mechanical properties were assessed using scratch and adhesion tests. The efficacy of these coatings for anticorrosion and antifouling applications was gauged through comprehensive evaluations, in-vitro corrosion studies, egg white tests, and antibacterial tests. PLA/Mg-Zn nanocomposite coating exhibited exceptional performance in terms of scratch hardness and adhesion strength, whereas PLA/Cu-Zn nanocomposite coating exhibited better anticorrosion and antifouling properties.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"38 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Anti-corrosion and Anti-fouling Properties of Galvanized Iron Using Nanocomposite Hydrophobic Coatings\",\"authors\":\"Prakash Kumar, M. R. Ramesh, Mrityunjay Doddamani, S. Narendranath\",\"doi\":\"10.1007/s11665-024-10035-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanocomposite hydrophobic coatings have garnered substantial interest in recent times due to their remarkable anticorrosion and antifouling attributes. These coatings are designed to repel water and thwart the adherence of contaminants, rendering them valuable for an array of applications, including self-cleaning surfaces, anti-icing coatings, marine protection, and biomedical uses. This study delves into the fabrication of nanocomposite coatings, incorporating mixed oxide nanoparticles of CuO-MgO, MgO-ZnO, and CuO-ZnO at varying weight percentages within a poly (lactic acid) (PLA) matrix. Surface morphology and elemental composition were examined through Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive x-ray Analysis (EDAX). The chemical composition of the coatings was assessed using Fourier Transform Infrared Spectroscopy (FTIR), revealing structural changes specific to PLA with Mg-Zn nanocomposite coating. The wettability studies indicate that the PLA/Cu-Mg coated sample exhibits superior hydrophobic properties, with a water contact angle (CA) of 98.2°. This value represents a remarkable 48.7 % increase compared to the bare Galvanised iron (GI) substrate. The coating's mechanical properties were assessed using scratch and adhesion tests. The efficacy of these coatings for anticorrosion and antifouling applications was gauged through comprehensive evaluations, in-vitro corrosion studies, egg white tests, and antibacterial tests. PLA/Mg-Zn nanocomposite coating exhibited exceptional performance in terms of scratch hardness and adhesion strength, whereas PLA/Cu-Zn nanocomposite coating exhibited better anticorrosion and antifouling properties.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10035-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10035-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
由于纳米复合疏水涂层具有显著的防腐和防污特性,因此近来引起了人们的极大兴趣。这些涂层具有拒水和阻挡污染物附着的作用,因此在一系列应用中具有重要价值,包括自清洁表面、防结冰涂层、海洋保护和生物医学用途。本研究深入探讨了纳米复合涂层的制造,在聚(乳酸)(PLA)基质中加入了不同重量百分比的氧化铜-氧化镁、氧化镁-氧化锌和氧化铜-氧化锌混合氧化物纳米粒子。通过场发射扫描电子显微镜(FESEM)和能量色散 X 射线分析(EDAX)对表面形貌和元素组成进行了检测。使用傅立叶变换红外光谱(FTIR)评估了涂层的化学成分,发现了聚乳酸与镁锌纳米复合涂层特有的结构变化。润湿性研究表明,聚乳酸/铜镁涂层样品具有优异的疏水性能,水接触角(CA)为 98.2°。与裸镀锌铁(GI)基材相比,该值明显增加了 48.7%。涂层的机械性能通过划痕和附着力测试进行了评估。通过综合评估、体外腐蚀研究、蛋清测试和抗菌测试,衡量了这些涂层在防腐和防污应用方面的功效。聚乳酸/镁锌纳米复合涂层在划痕硬度和附着强度方面表现出优异的性能,而聚乳酸/铜锌纳米复合涂层则表现出更好的防腐和防污性能。 图文摘要
Enhanced Anti-corrosion and Anti-fouling Properties of Galvanized Iron Using Nanocomposite Hydrophobic Coatings
Nanocomposite hydrophobic coatings have garnered substantial interest in recent times due to their remarkable anticorrosion and antifouling attributes. These coatings are designed to repel water and thwart the adherence of contaminants, rendering them valuable for an array of applications, including self-cleaning surfaces, anti-icing coatings, marine protection, and biomedical uses. This study delves into the fabrication of nanocomposite coatings, incorporating mixed oxide nanoparticles of CuO-MgO, MgO-ZnO, and CuO-ZnO at varying weight percentages within a poly (lactic acid) (PLA) matrix. Surface morphology and elemental composition were examined through Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive x-ray Analysis (EDAX). The chemical composition of the coatings was assessed using Fourier Transform Infrared Spectroscopy (FTIR), revealing structural changes specific to PLA with Mg-Zn nanocomposite coating. The wettability studies indicate that the PLA/Cu-Mg coated sample exhibits superior hydrophobic properties, with a water contact angle (CA) of 98.2°. This value represents a remarkable 48.7 % increase compared to the bare Galvanised iron (GI) substrate. The coating's mechanical properties were assessed using scratch and adhesion tests. The efficacy of these coatings for anticorrosion and antifouling applications was gauged through comprehensive evaluations, in-vitro corrosion studies, egg white tests, and antibacterial tests. PLA/Mg-Zn nanocomposite coating exhibited exceptional performance in terms of scratch hardness and adhesion strength, whereas PLA/Cu-Zn nanocomposite coating exhibited better anticorrosion and antifouling properties.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered