{"title":"用于微米级锥形孔成型的原位激光辅助微压印工艺","authors":"Siwei Meng, Guangfeng Shi, Hongbing Lv","doi":"10.1007/s11665-024-10000-z","DOIUrl":null,"url":null,"abstract":"<p>Microscale tapered hole parts are widely used in various disciplines such as microfluidics, biotechnology, and microelectronics. This paper proposes an in situ laser-assisted micro imprinting (In-LAI) process for machining micro-tapered holes with 10 μm outlet apertures on 300 μm thick Cu-ETP sheets. The laser heats the main deformation area of the workpiece in real time through the diamond indenter, which has the advantages of rapid response and the small heat-affected zone. Hertzian contact theory was used to solve the downward pressure range of the diamond indenter. The optimal machining process parameters targeting the minimum hole diameter at the outlet end are obtained by orthogonal tests. The experimental results show that the technology can controllably process micro conical holes with an outlet diameter of about 5–10 μm. In-LAI technology has provided a new method for manufacturing micro-tapered holes. This technology is also an extension of the in situ laser-assisted processing technology approach.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"8 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Laser-Assisted Micro-imprinting Process for Microscale Tapered Hole Forming\",\"authors\":\"Siwei Meng, Guangfeng Shi, Hongbing Lv\",\"doi\":\"10.1007/s11665-024-10000-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microscale tapered hole parts are widely used in various disciplines such as microfluidics, biotechnology, and microelectronics. This paper proposes an in situ laser-assisted micro imprinting (In-LAI) process for machining micro-tapered holes with 10 μm outlet apertures on 300 μm thick Cu-ETP sheets. The laser heats the main deformation area of the workpiece in real time through the diamond indenter, which has the advantages of rapid response and the small heat-affected zone. Hertzian contact theory was used to solve the downward pressure range of the diamond indenter. The optimal machining process parameters targeting the minimum hole diameter at the outlet end are obtained by orthogonal tests. The experimental results show that the technology can controllably process micro conical holes with an outlet diameter of about 5–10 μm. In-LAI technology has provided a new method for manufacturing micro-tapered holes. This technology is also an extension of the in situ laser-assisted processing technology approach.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10000-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10000-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
In Situ Laser-Assisted Micro-imprinting Process for Microscale Tapered Hole Forming
Microscale tapered hole parts are widely used in various disciplines such as microfluidics, biotechnology, and microelectronics. This paper proposes an in situ laser-assisted micro imprinting (In-LAI) process for machining micro-tapered holes with 10 μm outlet apertures on 300 μm thick Cu-ETP sheets. The laser heats the main deformation area of the workpiece in real time through the diamond indenter, which has the advantages of rapid response and the small heat-affected zone. Hertzian contact theory was used to solve the downward pressure range of the diamond indenter. The optimal machining process parameters targeting the minimum hole diameter at the outlet end are obtained by orthogonal tests. The experimental results show that the technology can controllably process micro conical holes with an outlet diameter of about 5–10 μm. In-LAI technology has provided a new method for manufacturing micro-tapered holes. This technology is also an extension of the in situ laser-assisted processing technology approach.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered