Xin Jia, Lin Wang, Zhenduo Ma, Zhiwei Yang, Jianping Xu, Junjie Wang
{"title":"闪光焊接参数对异种钢焊接接头微观结构和机械性能的影响","authors":"Xin Jia, Lin Wang, Zhenduo Ma, Zhiwei Yang, Jianping Xu, Junjie Wang","doi":"10.1007/s11665-024-09859-9","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, duplex stainless steel was utilized as an insert for welding high manganese steel frog to high-carbon steel rail under three flash welding processes. The effect of the number of flashes and upsetting force on mechanical performance and microstructure of the welded joints was studied. The results showed that the impact energy of the inserts after welding experienced a significant reduction in the 524-6 (with the number of flashes reduced to 6) and 772-8 (with the upsetting force increased to 772 kN) welded joints compared to the 524-8 welded joint (with an upsetting force of 524 kN and 8 flashes). The other mechanical performances of the welded joints under the three states did not differ significantly. No cracks were observed in the transition regions between the high manganese steel and the insert in any of the three welded joints. Nevertheless, notable micro-voids were present in the 524-6 welded joint. The ferrite in the insert of the 524-6 joint was distributed in a horizontal streamline and continuous strip shape. Conversely, in the 524-8 and 772-8 welded joints, the ferrite was distributed in an arch bridge shape. However, the arch amplitude of the ferrite bridge in the insert of the 772-8 welded joint was larger, and the center of the insert was contained a greater number of ferrites. Furthermore, the severe stress concentration in the middle of the insert of the 524-6 and 772-8 welded joints, coupled with the large amount of ferrite in the middle of the insert of the 772-8 welded joint, were the primary reasons for the diminished impact energy of the insert for these two joints.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"160 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Flash Welding Parameters on the Microstructure and Mechanical Performance of Dissimilar Steel Welded Joints\",\"authors\":\"Xin Jia, Lin Wang, Zhenduo Ma, Zhiwei Yang, Jianping Xu, Junjie Wang\",\"doi\":\"10.1007/s11665-024-09859-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present paper, duplex stainless steel was utilized as an insert for welding high manganese steel frog to high-carbon steel rail under three flash welding processes. The effect of the number of flashes and upsetting force on mechanical performance and microstructure of the welded joints was studied. The results showed that the impact energy of the inserts after welding experienced a significant reduction in the 524-6 (with the number of flashes reduced to 6) and 772-8 (with the upsetting force increased to 772 kN) welded joints compared to the 524-8 welded joint (with an upsetting force of 524 kN and 8 flashes). The other mechanical performances of the welded joints under the three states did not differ significantly. No cracks were observed in the transition regions between the high manganese steel and the insert in any of the three welded joints. Nevertheless, notable micro-voids were present in the 524-6 welded joint. The ferrite in the insert of the 524-6 joint was distributed in a horizontal streamline and continuous strip shape. Conversely, in the 524-8 and 772-8 welded joints, the ferrite was distributed in an arch bridge shape. However, the arch amplitude of the ferrite bridge in the insert of the 772-8 welded joint was larger, and the center of the insert was contained a greater number of ferrites. Furthermore, the severe stress concentration in the middle of the insert of the 524-6 and 772-8 welded joints, coupled with the large amount of ferrite in the middle of the insert of the 772-8 welded joint, were the primary reasons for the diminished impact energy of the insert for these two joints.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-09859-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-09859-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Influence of Flash Welding Parameters on the Microstructure and Mechanical Performance of Dissimilar Steel Welded Joints
In the present paper, duplex stainless steel was utilized as an insert for welding high manganese steel frog to high-carbon steel rail under three flash welding processes. The effect of the number of flashes and upsetting force on mechanical performance and microstructure of the welded joints was studied. The results showed that the impact energy of the inserts after welding experienced a significant reduction in the 524-6 (with the number of flashes reduced to 6) and 772-8 (with the upsetting force increased to 772 kN) welded joints compared to the 524-8 welded joint (with an upsetting force of 524 kN and 8 flashes). The other mechanical performances of the welded joints under the three states did not differ significantly. No cracks were observed in the transition regions between the high manganese steel and the insert in any of the three welded joints. Nevertheless, notable micro-voids were present in the 524-6 welded joint. The ferrite in the insert of the 524-6 joint was distributed in a horizontal streamline and continuous strip shape. Conversely, in the 524-8 and 772-8 welded joints, the ferrite was distributed in an arch bridge shape. However, the arch amplitude of the ferrite bridge in the insert of the 772-8 welded joint was larger, and the center of the insert was contained a greater number of ferrites. Furthermore, the severe stress concentration in the middle of the insert of the 524-6 and 772-8 welded joints, coupled with the large amount of ferrite in the middle of the insert of the 772-8 welded joint, were the primary reasons for the diminished impact energy of the insert for these two joints.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered