Rahul Prasad, N. Purushotham, G. V. Preetham Kumar, P. Suresh Babu, G. Sivakumar, B. Rajasekaran
{"title":"引爆频率对高温下引爆喷涂 Ni-20%Cr 涂层线性往复磨损行为的影响","authors":"Rahul Prasad, N. Purushotham, G. V. Preetham Kumar, P. Suresh Babu, G. Sivakumar, B. Rajasekaran","doi":"10.1007/s11665-024-10043-2","DOIUrl":null,"url":null,"abstract":"<p>The study explores the impact of detonation frequency (3 and 6 Hz) on the temperature-dependent linear reciprocating wear behavior of Ni-20%Cr coatings deposited by detonation spraying on a nickel-based superalloy (IN718). Dry sliding experiments were carried out at both ambient (25 °C) and high (420 °C) temperatures, using an alumina (Al<sub>2</sub>O<sub>3</sub>) ball as the counter material and different loads (5, 10, and 20 N). HV<sub>0.2</sub> microhardness indentations were used to test material hardness variations attributed to heat exposure. X-ray diffraction (XRD), Raman spectroscopy, and field emission scanning electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) were used to investigate the wear characteristics and mechanisms. Furthermore, surface roughness and profiles of worn surfaces (including track depth, breadth, and wear volume) enabled the calculation of wear rates using confocal optical 3D profilometry. The results showed the 6 Hz Ni-20%Cr coating showed better wear resistance than the 3 Hz coating. However, a higher wear rate and low friction coefficient at 420 °C were observed due to partial oxide particles, which were insufficient to restrict direct ball-to-metal contact. The research delves into wear maps, tribolayer formation, wear mechanisms, and sub-mechanisms.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"8 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Detonation Frequency on the Linear Reciprocating Wear Behavior of Detonation Sprayed Ni-20%Cr Coatings at Elevated Temperatures\",\"authors\":\"Rahul Prasad, N. Purushotham, G. V. Preetham Kumar, P. Suresh Babu, G. Sivakumar, B. Rajasekaran\",\"doi\":\"10.1007/s11665-024-10043-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study explores the impact of detonation frequency (3 and 6 Hz) on the temperature-dependent linear reciprocating wear behavior of Ni-20%Cr coatings deposited by detonation spraying on a nickel-based superalloy (IN718). Dry sliding experiments were carried out at both ambient (25 °C) and high (420 °C) temperatures, using an alumina (Al<sub>2</sub>O<sub>3</sub>) ball as the counter material and different loads (5, 10, and 20 N). HV<sub>0.2</sub> microhardness indentations were used to test material hardness variations attributed to heat exposure. X-ray diffraction (XRD), Raman spectroscopy, and field emission scanning electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) were used to investigate the wear characteristics and mechanisms. Furthermore, surface roughness and profiles of worn surfaces (including track depth, breadth, and wear volume) enabled the calculation of wear rates using confocal optical 3D profilometry. The results showed the 6 Hz Ni-20%Cr coating showed better wear resistance than the 3 Hz coating. However, a higher wear rate and low friction coefficient at 420 °C were observed due to partial oxide particles, which were insufficient to restrict direct ball-to-metal contact. The research delves into wear maps, tribolayer formation, wear mechanisms, and sub-mechanisms.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10043-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10043-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Effect of Detonation Frequency on the Linear Reciprocating Wear Behavior of Detonation Sprayed Ni-20%Cr Coatings at Elevated Temperatures
The study explores the impact of detonation frequency (3 and 6 Hz) on the temperature-dependent linear reciprocating wear behavior of Ni-20%Cr coatings deposited by detonation spraying on a nickel-based superalloy (IN718). Dry sliding experiments were carried out at both ambient (25 °C) and high (420 °C) temperatures, using an alumina (Al2O3) ball as the counter material and different loads (5, 10, and 20 N). HV0.2 microhardness indentations were used to test material hardness variations attributed to heat exposure. X-ray diffraction (XRD), Raman spectroscopy, and field emission scanning electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) were used to investigate the wear characteristics and mechanisms. Furthermore, surface roughness and profiles of worn surfaces (including track depth, breadth, and wear volume) enabled the calculation of wear rates using confocal optical 3D profilometry. The results showed the 6 Hz Ni-20%Cr coating showed better wear resistance than the 3 Hz coating. However, a higher wear rate and low friction coefficient at 420 °C were observed due to partial oxide particles, which were insufficient to restrict direct ball-to-metal contact. The research delves into wear maps, tribolayer formation, wear mechanisms, and sub-mechanisms.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered