{"title":"铝合金 7050 摩擦搅拌焊中的沉淀结构、微结构演变建模与表征","authors":"Ralph Bush, Ioan Feier, David Diercks","doi":"10.1007/s11665-024-10039-y","DOIUrl":null,"url":null,"abstract":"<p>Novel use of differential scanning calorimetry (DSC), with 1.7 mm specimen spacing intervals across a friction stir weld, coupled with microhardness, electrical conductivity, transmission electron microscopy (TEM), and novel three-dimensional thermal modeling of temperature profiles were used to characterize precipitate structure as a function of position across a friction stir welded and post-weld stabilized aluminum alloy 7050. The results show excellent agreement with predictions of existing FSW microstructural evolution models for 7XXX aluminum alloys. The DSC scans and thermal modeling accurately predicted the locations and peak temperatures at which transitions from 1) slow precipitate dissolution to 2) rapid dissolution, coarsening, and transformation of <i>η</i>′ to <i>η</i> precipitates to 3) increasing <i>η</i> dissolution and matrix supersaturation occur along the weld. These results are correlated to significant changes in the microhardness and electrical conductivity profiles. Following a 12-year period after the initial post-weld stabilization treatment, the closely spaced DSC scans were able to show that the initial stabilization treatment, (a standard T6 heat treatment), had not fully stabilized the weld near the heat affected zone (HAZ) hardness minimum. A 2-step stabilization method is proposed to fully stabilize the material in this region of the weld.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"28 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precipitate Structure, Microstructure Evolution Modeling and Characterization in an Aluminum Alloy 7050 Friction Stir Weld\",\"authors\":\"Ralph Bush, Ioan Feier, David Diercks\",\"doi\":\"10.1007/s11665-024-10039-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Novel use of differential scanning calorimetry (DSC), with 1.7 mm specimen spacing intervals across a friction stir weld, coupled with microhardness, electrical conductivity, transmission electron microscopy (TEM), and novel three-dimensional thermal modeling of temperature profiles were used to characterize precipitate structure as a function of position across a friction stir welded and post-weld stabilized aluminum alloy 7050. The results show excellent agreement with predictions of existing FSW microstructural evolution models for 7XXX aluminum alloys. The DSC scans and thermal modeling accurately predicted the locations and peak temperatures at which transitions from 1) slow precipitate dissolution to 2) rapid dissolution, coarsening, and transformation of <i>η</i>′ to <i>η</i> precipitates to 3) increasing <i>η</i> dissolution and matrix supersaturation occur along the weld. These results are correlated to significant changes in the microhardness and electrical conductivity profiles. Following a 12-year period after the initial post-weld stabilization treatment, the closely spaced DSC scans were able to show that the initial stabilization treatment, (a standard T6 heat treatment), had not fully stabilized the weld near the heat affected zone (HAZ) hardness minimum. A 2-step stabilization method is proposed to fully stabilize the material in this region of the weld.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10039-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10039-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Precipitate Structure, Microstructure Evolution Modeling and Characterization in an Aluminum Alloy 7050 Friction Stir Weld
Novel use of differential scanning calorimetry (DSC), with 1.7 mm specimen spacing intervals across a friction stir weld, coupled with microhardness, electrical conductivity, transmission electron microscopy (TEM), and novel three-dimensional thermal modeling of temperature profiles were used to characterize precipitate structure as a function of position across a friction stir welded and post-weld stabilized aluminum alloy 7050. The results show excellent agreement with predictions of existing FSW microstructural evolution models for 7XXX aluminum alloys. The DSC scans and thermal modeling accurately predicted the locations and peak temperatures at which transitions from 1) slow precipitate dissolution to 2) rapid dissolution, coarsening, and transformation of η′ to η precipitates to 3) increasing η dissolution and matrix supersaturation occur along the weld. These results are correlated to significant changes in the microhardness and electrical conductivity profiles. Following a 12-year period after the initial post-weld stabilization treatment, the closely spaced DSC scans were able to show that the initial stabilization treatment, (a standard T6 heat treatment), had not fully stabilized the weld near the heat affected zone (HAZ) hardness minimum. A 2-step stabilization method is proposed to fully stabilize the material in this region of the weld.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered