{"title":"不同交流电密度对模拟格尔木土壤环境中铁钴镍氢乙酸酯耐腐蚀性和机理的影响","authors":"Q. H. Ni, M. Zhu, Y. F. Yuan, S. Y. Guo","doi":"10.1007/s11665-024-10068-7","DOIUrl":null,"url":null,"abstract":"<p>The paper systematically studied the effect of AC density on corrosion resistance of FeCoNi HEA in simulated Golmud soil solution. The results imply that the applied <i>i</i><sub>AC</sub> seriously decreases the anticorrosion property of the HEA. In particular, under high AC density, the active state is presented and the corrosion characteristic changes from slightly local pitting to uneven overall corrosion with massive large-sized corrosion pits. Moreover, after imposed AC of 100 A/m<sup>2</sup>, the honeycomb holes are produced within passive film, which suggests that AC severely damages the film integrity, and reduces the protection and stability of the film. This phenomenon is due to the reason that as <i>i</i><sub>AC</sub> rises, more generated hydrogen ions/atoms and Cl<sup>−</sup> are absorbed on the defect regions of passive film, significantly promoting the film dissolution, and facilitating the pitting initiation and development.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Different AC Densities on Corrosion Resistance and Mechanism of FeCoNi HEA in Simulated Golmud Soil Environment\",\"authors\":\"Q. H. Ni, M. Zhu, Y. F. Yuan, S. Y. Guo\",\"doi\":\"10.1007/s11665-024-10068-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper systematically studied the effect of AC density on corrosion resistance of FeCoNi HEA in simulated Golmud soil solution. The results imply that the applied <i>i</i><sub>AC</sub> seriously decreases the anticorrosion property of the HEA. In particular, under high AC density, the active state is presented and the corrosion characteristic changes from slightly local pitting to uneven overall corrosion with massive large-sized corrosion pits. Moreover, after imposed AC of 100 A/m<sup>2</sup>, the honeycomb holes are produced within passive film, which suggests that AC severely damages the film integrity, and reduces the protection and stability of the film. This phenomenon is due to the reason that as <i>i</i><sub>AC</sub> rises, more generated hydrogen ions/atoms and Cl<sup>−</sup> are absorbed on the defect regions of passive film, significantly promoting the film dissolution, and facilitating the pitting initiation and development.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10068-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10068-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Different AC Densities on Corrosion Resistance and Mechanism of FeCoNi HEA in Simulated Golmud Soil Environment
The paper systematically studied the effect of AC density on corrosion resistance of FeCoNi HEA in simulated Golmud soil solution. The results imply that the applied iAC seriously decreases the anticorrosion property of the HEA. In particular, under high AC density, the active state is presented and the corrosion characteristic changes from slightly local pitting to uneven overall corrosion with massive large-sized corrosion pits. Moreover, after imposed AC of 100 A/m2, the honeycomb holes are produced within passive film, which suggests that AC severely damages the film integrity, and reduces the protection and stability of the film. This phenomenon is due to the reason that as iAC rises, more generated hydrogen ions/atoms and Cl− are absorbed on the defect regions of passive film, significantly promoting the film dissolution, and facilitating the pitting initiation and development.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered