{"title":"氮化石墨碳上接枝的铁/锰卟啉在烯烃异相氧化中的催化活性","authors":"Saeed Rayati, Hamideh Bathaee, Alireza Badiei","doi":"10.1002/aoc.7679","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Biomimetic heterogeneous catalysts were prepared by immobilization of <i>meso</i>-tetrakis(4-carboxyphenyl)porphyrinatomanganese(III) acetate (MnTCPP) and <i>meso</i>-tetrakis(4-carboxyphenyl)porphyrinatoiron(III) chloride (FeTCPP) on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanosheets. The anchored catalysts were characterized by various techniques such as scanning electron microscopy, thermogravimetric analysis, powder X-ray diffraction, ultraviolet visible, photoluminescence, flame atomic absorption, and Fourier transform infrared spectroscopy. The thermogravimetric analysis demonstrated that the prepared catalysts were thermally stable up to almost 350°C, exhibiting high thermal stability. In the following, the catalytic efficiency of the prepared nanocatalyst was also investigated for the oxidation of various olefins with hydrogen peroxide (as a green oxidant) and the effect of various parameters which may affect the catalytic efficiency was optimized. The maximum conversion (100% for α-methylstyrene and 97% for cyclooctene) was obtained in the presence of MnTCPP@C<sub>3</sub>N<sub>4</sub>. The Mn porphyrin nanocatalyst shows higher catalytic efficiency compared to the Fe porphyrin.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"38 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic Activity of Fe/Mn Porphyrins Grafted on Graphitic Carbon Nitride in the Heterogeneous Oxidation of Olefins\",\"authors\":\"Saeed Rayati, Hamideh Bathaee, Alireza Badiei\",\"doi\":\"10.1002/aoc.7679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Biomimetic heterogeneous catalysts were prepared by immobilization of <i>meso</i>-tetrakis(4-carboxyphenyl)porphyrinatomanganese(III) acetate (MnTCPP) and <i>meso</i>-tetrakis(4-carboxyphenyl)porphyrinatoiron(III) chloride (FeTCPP) on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanosheets. The anchored catalysts were characterized by various techniques such as scanning electron microscopy, thermogravimetric analysis, powder X-ray diffraction, ultraviolet visible, photoluminescence, flame atomic absorption, and Fourier transform infrared spectroscopy. The thermogravimetric analysis demonstrated that the prepared catalysts were thermally stable up to almost 350°C, exhibiting high thermal stability. In the following, the catalytic efficiency of the prepared nanocatalyst was also investigated for the oxidation of various olefins with hydrogen peroxide (as a green oxidant) and the effect of various parameters which may affect the catalytic efficiency was optimized. The maximum conversion (100% for α-methylstyrene and 97% for cyclooctene) was obtained in the presence of MnTCPP@C<sub>3</sub>N<sub>4</sub>. The Mn porphyrin nanocatalyst shows higher catalytic efficiency compared to the Fe porphyrin.</p>\\n </div>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7679\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7679","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
通过将中四(4-羧基苯基)卟啉锰(III)醋酸盐(MnTCPP)和中四(4-羧基苯基)卟啉氯化铁(III)(FeTCPP)固定在氮化石墨碳(g-C3N4)纳米片上,制备了仿生异相催化剂。通过扫描电子显微镜、热重分析、粉末 X 射线衍射、紫外可见光、光致发光、火焰原子吸收和傅立叶变换红外光谱等多种技术对锚定催化剂进行了表征。热重分析表明,制备的催化剂热稳定性高达近 350°C,表现出较高的热稳定性。接下来,还研究了制备的纳米催化剂对过氧化氢(作为绿色氧化剂)氧化各种烯烃的催化效率,并对可能影响催化效率的各种参数的影响进行了优化。在 MnTCPP@C3N4 的存在下,获得了最大转化率(α-甲基苯乙烯为 100%,环辛烯为 97%)。与铁卟啉相比,锰卟啉纳米催化剂的催化效率更高。
Catalytic Activity of Fe/Mn Porphyrins Grafted on Graphitic Carbon Nitride in the Heterogeneous Oxidation of Olefins
Biomimetic heterogeneous catalysts were prepared by immobilization of meso-tetrakis(4-carboxyphenyl)porphyrinatomanganese(III) acetate (MnTCPP) and meso-tetrakis(4-carboxyphenyl)porphyrinatoiron(III) chloride (FeTCPP) on graphitic carbon nitride (g-C3N4) nanosheets. The anchored catalysts were characterized by various techniques such as scanning electron microscopy, thermogravimetric analysis, powder X-ray diffraction, ultraviolet visible, photoluminescence, flame atomic absorption, and Fourier transform infrared spectroscopy. The thermogravimetric analysis demonstrated that the prepared catalysts were thermally stable up to almost 350°C, exhibiting high thermal stability. In the following, the catalytic efficiency of the prepared nanocatalyst was also investigated for the oxidation of various olefins with hydrogen peroxide (as a green oxidant) and the effect of various parameters which may affect the catalytic efficiency was optimized. The maximum conversion (100% for α-methylstyrene and 97% for cyclooctene) was obtained in the presence of MnTCPP@C3N4. The Mn porphyrin nanocatalyst shows higher catalytic efficiency compared to the Fe porphyrin.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.