Kangren Niu, Ying Li, Keyu Sun, Xuechun Feng, Li Zhang, Xiaozhou Song
{"title":"柞树软木塞的化学成分和抗真菌活性","authors":"Kangren Niu, Ying Li, Keyu Sun, Xuechun Feng, Li Zhang, Xiaozhou Song","doi":"10.1007/s00226-024-01592-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study we separated the chemical components of cork from <i>Quercus variabilis</i> by various solvent extraction and alcoholysis methods. We identified the content and chemical composition of suberin and dichloromethane extract with gas chromatography-mass spectrometry (GC-MS) and analyzed the antifungal effects of different cork extracts against wood-decaying fungi. The results showed that the main structural component of cork, suberin, averaging 36.34% of the total dry weight, exhibited a pronounced inhibitory effect on wood-decaying fungi, compared to the dichloromethane extract. By the end of the entire culture period, the colony diameter of white rot fungi was 5 mm in the 40 mg/mL suberin treatment group, 19 mm for brown rot fungi, both significantly smaller than the control group (90 mm). Hydroxy fatty acids, free fatty acids, and α,ω-diacids may be the key components contributing to the antifungal activity of suberin. The inhibitory mechanism of suberin components on wood-decaying fungi may involve suppressing the respiratory metabolism of the fungi and increasing the permeability of their cell membranes, thereby limiting their normal life activities.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1781 - 1796"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chemical composition and antifungal activity of cork from Quercus variabilis\",\"authors\":\"Kangren Niu, Ying Li, Keyu Sun, Xuechun Feng, Li Zhang, Xiaozhou Song\",\"doi\":\"10.1007/s00226-024-01592-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study we separated the chemical components of cork from <i>Quercus variabilis</i> by various solvent extraction and alcoholysis methods. We identified the content and chemical composition of suberin and dichloromethane extract with gas chromatography-mass spectrometry (GC-MS) and analyzed the antifungal effects of different cork extracts against wood-decaying fungi. The results showed that the main structural component of cork, suberin, averaging 36.34% of the total dry weight, exhibited a pronounced inhibitory effect on wood-decaying fungi, compared to the dichloromethane extract. By the end of the entire culture period, the colony diameter of white rot fungi was 5 mm in the 40 mg/mL suberin treatment group, 19 mm for brown rot fungi, both significantly smaller than the control group (90 mm). Hydroxy fatty acids, free fatty acids, and α,ω-diacids may be the key components contributing to the antifungal activity of suberin. The inhibitory mechanism of suberin components on wood-decaying fungi may involve suppressing the respiratory metabolism of the fungi and increasing the permeability of their cell membranes, thereby limiting their normal life activities.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"58 5-6\",\"pages\":\"1781 - 1796\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01592-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01592-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
The chemical composition and antifungal activity of cork from Quercus variabilis
In this study we separated the chemical components of cork from Quercus variabilis by various solvent extraction and alcoholysis methods. We identified the content and chemical composition of suberin and dichloromethane extract with gas chromatography-mass spectrometry (GC-MS) and analyzed the antifungal effects of different cork extracts against wood-decaying fungi. The results showed that the main structural component of cork, suberin, averaging 36.34% of the total dry weight, exhibited a pronounced inhibitory effect on wood-decaying fungi, compared to the dichloromethane extract. By the end of the entire culture period, the colony diameter of white rot fungi was 5 mm in the 40 mg/mL suberin treatment group, 19 mm for brown rot fungi, both significantly smaller than the control group (90 mm). Hydroxy fatty acids, free fatty acids, and α,ω-diacids may be the key components contributing to the antifungal activity of suberin. The inhibitory mechanism of suberin components on wood-decaying fungi may involve suppressing the respiratory metabolism of the fungi and increasing the permeability of their cell membranes, thereby limiting their normal life activities.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.