Elena Dalle Vedove, Alessia Benvenga, Gianluca Nicolai, Marcella Massimini, Maria Veronica Giordano, Francesco Di Pierro, Benedetta Bachetti
{"title":"SCIME™ 中抗生素诱导的菌群失调再现了微生物群落多样性和代谢物对体内疾病的调节作用","authors":"Elena Dalle Vedove, Alessia Benvenga, Gianluca Nicolai, Marcella Massimini, Maria Veronica Giordano, Francesco Di Pierro, Benedetta Bachetti","doi":"10.3389/fmicb.2024.1455839","DOIUrl":null,"url":null,"abstract":"Establishing the contextIntestinal dysbiosis is a significant concern among dog owners, and the gut health of pets is an emerging research field. In this context, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with <jats:italic>in vivo</jats:italic> data.Stating the purpose/introducing the studyThe current study presents a further application of this model by using amoxicillin and clavulanic acid to induce dysbiosis, aiming to provoke changes in microbial community and metabolite production, which are well-known markers of the disease <jats:italic>in vivo</jats:italic>.Describing methodologyFollowing the induction of dysbiosis, prebiotic supplementation was tested to investigate the potential for microbiota recovery under different dietary conditions.Presenting the resultsThe results showed that antibiotic stimulation in the SCIME™ model can produce significant changes in microbial communities and metabolic activity, including a decrease in microbial richness, a reduction in propionic acid production, and alterations in microbial composition. Additionally, changes in ammonium and butyric acid levels induced by the tested diets were observed.Discussing the findingsThis alteration in microbial community and metabolites production mimicks <jats:italic>in vivo</jats:italic> canine dysbiosis patterns. A novel dynamic <jats:italic>in vitro</jats:italic> model simulating canine antibiotic-induced dysbiosis, capable of reproducing microbial and metabolic changes observed <jats:italic>in vivo</jats:italic>, has been developed and is suitable for testing the effects of nutritional changes.","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotic-induced dysbiosis in the SCIME™ recapitulates microbial community diversity and metabolites modulation of in vivo disease\",\"authors\":\"Elena Dalle Vedove, Alessia Benvenga, Gianluca Nicolai, Marcella Massimini, Maria Veronica Giordano, Francesco Di Pierro, Benedetta Bachetti\",\"doi\":\"10.3389/fmicb.2024.1455839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing the contextIntestinal dysbiosis is a significant concern among dog owners, and the gut health of pets is an emerging research field. In this context, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with <jats:italic>in vivo</jats:italic> data.Stating the purpose/introducing the studyThe current study presents a further application of this model by using amoxicillin and clavulanic acid to induce dysbiosis, aiming to provoke changes in microbial community and metabolite production, which are well-known markers of the disease <jats:italic>in vivo</jats:italic>.Describing methodologyFollowing the induction of dysbiosis, prebiotic supplementation was tested to investigate the potential for microbiota recovery under different dietary conditions.Presenting the resultsThe results showed that antibiotic stimulation in the SCIME™ model can produce significant changes in microbial communities and metabolic activity, including a decrease in microbial richness, a reduction in propionic acid production, and alterations in microbial composition. Additionally, changes in ammonium and butyric acid levels induced by the tested diets were observed.Discussing the findingsThis alteration in microbial community and metabolites production mimicks <jats:italic>in vivo</jats:italic> canine dysbiosis patterns. A novel dynamic <jats:italic>in vitro</jats:italic> model simulating canine antibiotic-induced dysbiosis, capable of reproducing microbial and metabolic changes observed <jats:italic>in vivo</jats:italic>, has been developed and is suitable for testing the effects of nutritional changes.\",\"PeriodicalId\":12466,\"journal\":{\"name\":\"Frontiers in Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmicb.2024.1455839\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1455839","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Antibiotic-induced dysbiosis in the SCIME™ recapitulates microbial community diversity and metabolites modulation of in vivo disease
Establishing the contextIntestinal dysbiosis is a significant concern among dog owners, and the gut health of pets is an emerging research field. In this context, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with in vivo data.Stating the purpose/introducing the studyThe current study presents a further application of this model by using amoxicillin and clavulanic acid to induce dysbiosis, aiming to provoke changes in microbial community and metabolite production, which are well-known markers of the disease in vivo.Describing methodologyFollowing the induction of dysbiosis, prebiotic supplementation was tested to investigate the potential for microbiota recovery under different dietary conditions.Presenting the resultsThe results showed that antibiotic stimulation in the SCIME™ model can produce significant changes in microbial communities and metabolic activity, including a decrease in microbial richness, a reduction in propionic acid production, and alterations in microbial composition. Additionally, changes in ammonium and butyric acid levels induced by the tested diets were observed.Discussing the findingsThis alteration in microbial community and metabolites production mimicks in vivo canine dysbiosis patterns. A novel dynamic in vitro model simulating canine antibiotic-induced dysbiosis, capable of reproducing microbial and metabolic changes observed in vivo, has been developed and is suitable for testing the effects of nutritional changes.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.