Berthy Mbuya, Samuel Plante, Farouk Ammar, Ariane Brault, Simon Labbé
{"title":"鼠李糖菌鸟氨酸-N5-氧化酶 Sib2 与 N5-反式乙酰化酶 Sib3 在亚铁铬生物合成途径中相互作用","authors":"Berthy Mbuya, Samuel Plante, Farouk Ammar, Ariane Brault, Simon Labbé","doi":"10.3389/fmicb.2024.1467397","DOIUrl":null,"url":null,"abstract":"The fission yeast <jats:italic>Schizosaccharomyces pombe</jats:italic> produces the hydroxamate-type siderophore ferrichrome (Fc). The biosynthesis of Fc requires the Fc synthase Sib1, the ornithine-N<jats:sup>5</jats:sup>-oxygenase Sib2, and the N<jats:sup>5</jats:sup>-hydroxyornithine-N<jats:sup>5</jats:sup>-transacetylase Sib3. In this study, we demonstrate the critical importance of the His<jats:sup>248</jats:sup> residue of Sib3 in Fc production. Cells expressing a <jats:italic>sib3H248A</jats:italic> mutant allele fail to grow in iron-poor media without Fc supplementation. These <jats:italic>sib3H248A</jats:italic> mutant cells are consistently unable to promote Fc-dependent growth of <jats:italic>Saccharomyces cerevisiae</jats:italic> cells in cross-feeding experiments. Green fluorescent protein (GFP)-tagged wild-type Sib3 and mutant Sib3H248A exhibit a pancellular distribution. Coimmunoprecipitation assays revealed that both wild-type and Sib3H248A physically interact with Sib2. Further analysis identified a minimal C-terminal region from amino acids 290–334 of Sib3 that is required for interaction with Sib2. Deletion mapping analysis identified two regions of Sib2 as being required for its association with Sib3. The first region encompasses amino acids 1–135, and the second region corresponds to amino acids 281–358 of Sib2. Taken together, these results describe the first example of a physical interaction between an ornithine-N<jats:sup>5</jats:sup>-oxygenase and an N<jats:sup>5</jats:sup>-hydroxyornithine-N<jats:sup>5</jats:sup>-transacetylase controlling the biosynthesis of a hydroxamate-type siderophore.","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Schizosaccharomyces pombe ornithine-N5-oxygenase Sib2 interacts with the N5-transacetylase Sib3 in the ferrichrome biosynthetic pathway\",\"authors\":\"Berthy Mbuya, Samuel Plante, Farouk Ammar, Ariane Brault, Simon Labbé\",\"doi\":\"10.3389/fmicb.2024.1467397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fission yeast <jats:italic>Schizosaccharomyces pombe</jats:italic> produces the hydroxamate-type siderophore ferrichrome (Fc). The biosynthesis of Fc requires the Fc synthase Sib1, the ornithine-N<jats:sup>5</jats:sup>-oxygenase Sib2, and the N<jats:sup>5</jats:sup>-hydroxyornithine-N<jats:sup>5</jats:sup>-transacetylase Sib3. In this study, we demonstrate the critical importance of the His<jats:sup>248</jats:sup> residue of Sib3 in Fc production. Cells expressing a <jats:italic>sib3H248A</jats:italic> mutant allele fail to grow in iron-poor media without Fc supplementation. These <jats:italic>sib3H248A</jats:italic> mutant cells are consistently unable to promote Fc-dependent growth of <jats:italic>Saccharomyces cerevisiae</jats:italic> cells in cross-feeding experiments. Green fluorescent protein (GFP)-tagged wild-type Sib3 and mutant Sib3H248A exhibit a pancellular distribution. Coimmunoprecipitation assays revealed that both wild-type and Sib3H248A physically interact with Sib2. Further analysis identified a minimal C-terminal region from amino acids 290–334 of Sib3 that is required for interaction with Sib2. Deletion mapping analysis identified two regions of Sib2 as being required for its association with Sib3. The first region encompasses amino acids 1–135, and the second region corresponds to amino acids 281–358 of Sib2. Taken together, these results describe the first example of a physical interaction between an ornithine-N<jats:sup>5</jats:sup>-oxygenase and an N<jats:sup>5</jats:sup>-hydroxyornithine-N<jats:sup>5</jats:sup>-transacetylase controlling the biosynthesis of a hydroxamate-type siderophore.\",\"PeriodicalId\":12466,\"journal\":{\"name\":\"Frontiers in Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmicb.2024.1467397\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1467397","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
裂殖酵母(Schizosaccharomyces pombe)能产生羟基氨基甲酸酯型苷酸亚铁铬(Fc)。Fc 的生物合成需要 Fc 合成酶 Sib1、鸟氨酸-N5-加氧酶 Sib2 和 N5-羟基鸟氨酸-N5-反式乙酰化酶 Sib3。在这项研究中,我们证明了 Sib3 的 His248 残基在 Fc 生成过程中的关键重要性。表达 sib3H248A 突变等位基因的细胞在不补充 Fc 的情况下无法在贫铁培养基中生长。在交叉饲养实验中,这些 sib3H248A 突变体细胞始终无法促进依赖 Fc 的酿酒酵母细胞的生长。绿色荧光蛋白(GFP)标记的野生型 Sib3 和突变体 Sib3H248A 显示出胰腺分布。免疫沉淀试验显示,野生型和 Sib3H248A 都与 Sib2 有物理相互作用。进一步分析发现,Sib3 的 290-334 氨基酸是与 Sib2 相互作用所必需的最小 C 端区域。缺失映射分析确定了 Sib2 与 Sib3 相互作用所需的两个区域。第一个区域包括氨基酸 1-135,第二个区域对应 Sib2 的氨基酸 281-358。综上所述,这些结果首次描述了鸟氨酸-N5-加氧酶和 N5-羟基鸟氨酸-N5-反式乙酰化酶之间的物理相互作用,这种相互作用控制着羟氨酸盐型苷元的生物合成。
The Schizosaccharomyces pombe ornithine-N5-oxygenase Sib2 interacts with the N5-transacetylase Sib3 in the ferrichrome biosynthetic pathway
The fission yeast Schizosaccharomyces pombe produces the hydroxamate-type siderophore ferrichrome (Fc). The biosynthesis of Fc requires the Fc synthase Sib1, the ornithine-N5-oxygenase Sib2, and the N5-hydroxyornithine-N5-transacetylase Sib3. In this study, we demonstrate the critical importance of the His248 residue of Sib3 in Fc production. Cells expressing a sib3H248A mutant allele fail to grow in iron-poor media without Fc supplementation. These sib3H248A mutant cells are consistently unable to promote Fc-dependent growth of Saccharomyces cerevisiae cells in cross-feeding experiments. Green fluorescent protein (GFP)-tagged wild-type Sib3 and mutant Sib3H248A exhibit a pancellular distribution. Coimmunoprecipitation assays revealed that both wild-type and Sib3H248A physically interact with Sib2. Further analysis identified a minimal C-terminal region from amino acids 290–334 of Sib3 that is required for interaction with Sib2. Deletion mapping analysis identified two regions of Sib2 as being required for its association with Sib3. The first region encompasses amino acids 1–135, and the second region corresponds to amino acids 281–358 of Sib2. Taken together, these results describe the first example of a physical interaction between an ornithine-N5-oxygenase and an N5-hydroxyornithine-N5-transacetylase controlling the biosynthesis of a hydroxamate-type siderophore.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.