{"title":"风切变条件下冬季雷暴上方中间层可能出现萌芽的区域的数值模拟","authors":"Carynelisa Haspel , Yoav Yair","doi":"10.1016/j.asr.2024.08.050","DOIUrl":null,"url":null,"abstract":"<div><div>Transient luminous events (TLEs) is the collective name given to mesospheric electrical breakdown phenomena occurring in conjunction with strong lightning discharges in tropospheric thunderstorms. They include elves, sprites, halos, and jets, and are characterized by short lived optical emissions, mostly of red (665 nm) and blue (337 nm) wavelengths. Sprites are caused by the brief quasi-electrostatic field induced in the mesosphere, mostly after the removal of the upper positive charge of the thundercloud by a +CG, and they have been recorded above most of the lightning activity centers on Earth. In wintertime, there are just a few areas where lightning occurs, and of those, sprites have been observed over the Sea of Japan, the British Channel, and the Mediterranean Sea. Unlike their summer counterparts, winter thunderstorms tend to have weaker updrafts and as a result, reduced vertical dimensions and compact charge structures, whose positive and negative centers are located at lower altitudes. These storms are often susceptible to significant wind shear and as a result may exhibit a tilted dipole charge structure and a lateral offset of the upper positive charge relative to the main negative charge. We present results of numerical simulations using a three-dimensional explicit formulation of the mesospheric quasi-electrostatic electrical field following a lightning discharge from a typical mid-latitude winter thunderstorm exhibiting tilt due to wind shear and evaluate the regions of possible sprite inception. Our results show, as numerous observations suggest, that sprites can be shifted a large distance from the location of the parent +CG in the direction of the shear and will occur over a larger region compared with non-sheared storms.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of the region of possible sprite inception in the mesosphere above winter thunderstorms under wind shear\",\"authors\":\"Carynelisa Haspel , Yoav Yair\",\"doi\":\"10.1016/j.asr.2024.08.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transient luminous events (TLEs) is the collective name given to mesospheric electrical breakdown phenomena occurring in conjunction with strong lightning discharges in tropospheric thunderstorms. They include elves, sprites, halos, and jets, and are characterized by short lived optical emissions, mostly of red (665 nm) and blue (337 nm) wavelengths. Sprites are caused by the brief quasi-electrostatic field induced in the mesosphere, mostly after the removal of the upper positive charge of the thundercloud by a +CG, and they have been recorded above most of the lightning activity centers on Earth. In wintertime, there are just a few areas where lightning occurs, and of those, sprites have been observed over the Sea of Japan, the British Channel, and the Mediterranean Sea. Unlike their summer counterparts, winter thunderstorms tend to have weaker updrafts and as a result, reduced vertical dimensions and compact charge structures, whose positive and negative centers are located at lower altitudes. These storms are often susceptible to significant wind shear and as a result may exhibit a tilted dipole charge structure and a lateral offset of the upper positive charge relative to the main negative charge. We present results of numerical simulations using a three-dimensional explicit formulation of the mesospheric quasi-electrostatic electrical field following a lightning discharge from a typical mid-latitude winter thunderstorm exhibiting tilt due to wind shear and evaluate the regions of possible sprite inception. Our results show, as numerous observations suggest, that sprites can be shifted a large distance from the location of the parent +CG in the direction of the shear and will occur over a larger region compared with non-sheared storms.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117724008743\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724008743","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Numerical simulations of the region of possible sprite inception in the mesosphere above winter thunderstorms under wind shear
Transient luminous events (TLEs) is the collective name given to mesospheric electrical breakdown phenomena occurring in conjunction with strong lightning discharges in tropospheric thunderstorms. They include elves, sprites, halos, and jets, and are characterized by short lived optical emissions, mostly of red (665 nm) and blue (337 nm) wavelengths. Sprites are caused by the brief quasi-electrostatic field induced in the mesosphere, mostly after the removal of the upper positive charge of the thundercloud by a +CG, and they have been recorded above most of the lightning activity centers on Earth. In wintertime, there are just a few areas where lightning occurs, and of those, sprites have been observed over the Sea of Japan, the British Channel, and the Mediterranean Sea. Unlike their summer counterparts, winter thunderstorms tend to have weaker updrafts and as a result, reduced vertical dimensions and compact charge structures, whose positive and negative centers are located at lower altitudes. These storms are often susceptible to significant wind shear and as a result may exhibit a tilted dipole charge structure and a lateral offset of the upper positive charge relative to the main negative charge. We present results of numerical simulations using a three-dimensional explicit formulation of the mesospheric quasi-electrostatic electrical field following a lightning discharge from a typical mid-latitude winter thunderstorm exhibiting tilt due to wind shear and evaluate the regions of possible sprite inception. Our results show, as numerous observations suggest, that sprites can be shifted a large distance from the location of the parent +CG in the direction of the shear and will occur over a larger region compared with non-sheared storms.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.