Federico Antonello, Daniele Segneri, James Eggleston
{"title":"用于航天器运行模拟模型飞行中校准和减少差异的贝叶斯框架","authors":"Federico Antonello, Daniele Segneri, James Eggleston","doi":"10.1016/j.asr.2024.08.059","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling and Simulation (M&S) tools have become indispensable for the comprehensive design, operations, and maintenance of products in the space industry. An example is the European Space Agency (ESA), which relies heavily on M&S throughout the entire lifecycle of a spacecraft. However, their use in operational settings poses significant challenges, mainly attributable to (<em>i</em>) the harsh, uncontrollable, and often unforeseen environmental conditions; (<em>ii</em>) the dramatic changes in operating conditions throughout a spacecraft’s lifespan, often beyond the intended designed-for lifetime; and (<em>iii</em>) the presence of epistemic and aleatoric uncertainty. This results in unavoidable discrepancies between the numerical simulations and real measurements, limiting their use for delicate operational tasks. To address those challenges, we present a Bayesian framework for simultaneous calibration of M&S tools, reduction of the model discrepancy, and quantification of the process and model uncertainties. The approach leverages the Kennedy and O’Hagan (KOH) calibration, tailored for a multi-objective problem. Its effectiveness is shown by its application to flying Earth observation spacecraft data and the operational simulation models.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"74 11","pages":"Pages 5923-5933"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian framework for in-flight calibration and discrepancy reduction of spacecraft operational simulation models\",\"authors\":\"Federico Antonello, Daniele Segneri, James Eggleston\",\"doi\":\"10.1016/j.asr.2024.08.059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modeling and Simulation (M&S) tools have become indispensable for the comprehensive design, operations, and maintenance of products in the space industry. An example is the European Space Agency (ESA), which relies heavily on M&S throughout the entire lifecycle of a spacecraft. However, their use in operational settings poses significant challenges, mainly attributable to (<em>i</em>) the harsh, uncontrollable, and often unforeseen environmental conditions; (<em>ii</em>) the dramatic changes in operating conditions throughout a spacecraft’s lifespan, often beyond the intended designed-for lifetime; and (<em>iii</em>) the presence of epistemic and aleatoric uncertainty. This results in unavoidable discrepancies between the numerical simulations and real measurements, limiting their use for delicate operational tasks. To address those challenges, we present a Bayesian framework for simultaneous calibration of M&S tools, reduction of the model discrepancy, and quantification of the process and model uncertainties. The approach leverages the Kennedy and O’Hagan (KOH) calibration, tailored for a multi-objective problem. Its effectiveness is shown by its application to flying Earth observation spacecraft data and the operational simulation models.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":\"74 11\",\"pages\":\"Pages 5923-5933\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117724008834\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724008834","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A Bayesian framework for in-flight calibration and discrepancy reduction of spacecraft operational simulation models
Modeling and Simulation (M&S) tools have become indispensable for the comprehensive design, operations, and maintenance of products in the space industry. An example is the European Space Agency (ESA), which relies heavily on M&S throughout the entire lifecycle of a spacecraft. However, their use in operational settings poses significant challenges, mainly attributable to (i) the harsh, uncontrollable, and often unforeseen environmental conditions; (ii) the dramatic changes in operating conditions throughout a spacecraft’s lifespan, often beyond the intended designed-for lifetime; and (iii) the presence of epistemic and aleatoric uncertainty. This results in unavoidable discrepancies between the numerical simulations and real measurements, limiting their use for delicate operational tasks. To address those challenges, we present a Bayesian framework for simultaneous calibration of M&S tools, reduction of the model discrepancy, and quantification of the process and model uncertainties. The approach leverages the Kennedy and O’Hagan (KOH) calibration, tailored for a multi-objective problem. Its effectiveness is shown by its application to flying Earth observation spacecraft data and the operational simulation models.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.